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Twinning is profuse in bcc transition metals (TMs) except bulk W and Mo. However, W and Mo
nanocrystals surprisingly exhibit twinning during room temperature compression, which is completely
unexpected as established nucleation mechanisms are not viable in them. Here, we reveal the physical
origin of deformation twinning in W and Mo. We employ density functional theory (DFT) and a reduced-
constraint slip method to compute the stress-dependent generalized stacking fault enthalpy (GSFH), the
thermodynamic quantity to be minimized under constant loading. The simple slipped structures and GSFH
lines show that compressive stresses stabilize a two-layer twin embryo, which can grow rapidly via
twinning disconnections with negligible energy barriers. Direct atomistic simulations unveil the explicit
twinning path in agreement with the DFT GSFH lines. Twinning is thus the preferred deformation
mechanism in W and Mo when shear stresses are coupled with high compressive stresses. Furthermore,
twinnability can be related to the elastic constants of a stacking fault phase (SFP). The hcp phase may serve
as a candidate SFP for the f112gh1̄ 1̄ 1i twinning system in bcc TMs and alloys, which is coincident with
the f111gh112̄i twinning in fcc structures.
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Twinning plays an important role in plastic deformation
of crystalline materials. Deformation twinning is ubiqui-
tous in bcc Fe [1], V [2,3], Nb [4], Ta [2,4], and Cr [5] but is
less active in bulk Mo and W under quasistatic loadings.
The subtle differences among these elemental transition
metals (TMs) were recently uncovered using a reduced-
constraint (RC) slip method and associated γrc lines [6].
The RC slip allows multilayer interactions and atomic
shuffle displacements, yielding γrc lines with identical or
lower energies compared to the classical γ lines. The γrc line
replaces the classical γ line and is applicable to both twin
and dislocation nucleations in all crystal structures. For bcc
TM in particular, γrc shows that a metastable two-layer twin
embryo can be formed via a simple slip between two atom
layers on the f112g twinning plane in Fe, group VB TMs,
and Cr, while coordinated slips of three atom layers are
required to form a metastable three-layer twin embryo in
Mo and W. Based on this twin nucleation path, twinning
is naturally more difficult to activate in Mo and W.
Nonetheless, twinning and detwinning are frequently
reported in Mo and W nanocrystals upon loading and
unloading at room temperature [7–9]. The activation of
twinning was simply attributed to a lack of dislocation
sources and higher stresses achievable in nanoscale sam-
ples [7]. However, many fundamental issues remain unclear
in these two bcc elements, including the physical origin of
twinning, the true twin nucleation path, effects of applied
stresses, as well as the competition between twinning and
dislocation plasticity [10,11].

In this Letter, we introduce the stress-dependent gener-
alized stacking fault energy (GSFE)ΨU and enthalpyΨH in
Mo and W and show that the unstable two-layer twin
embryo becomes metastable under compressive stresses
above some threshold σc. The two-layer twin embryo, or
the metastable stacking fault (SF), is nearly identical to that
in other TMs. The presence of the metastable SF corrob-
orates the profile of the generalized stacking fault enthalpy
(GSFH), which is the quantity dictating thermodynamic
equilibrium and twin nucleation under constant-stress
loadings in small-scale samples [12]. Twin nucleation
can thus occur in Mo and W via a simple slip similar to
that in other bcc TMs. The barrier to reaching the
metastable SF/twin embryo is lower than that required to
nucleate a full dislocation. Twinning naturally becomes the
favourable deformation mechanism over dislocation nucle-
ation and glide. We present a simple, elasticity-based
criterion as a qualitative condition for the metastability
of the SF/two-layer twin embryo and show the twinning
path in W via direct atomistic simulations.
The stress-dependentΨU andΨH are calculated using the

RC slip method with a tilt cell [13–15] and density
functional theory (DFT) as implemented in Vienna Ab
initio Simulation Package [16,17] (Supplemental Material
[18]). For a system with slip s and under normal stress σn,
its internal energy U is a state function completely
determined by two state variables s and l, i.e., Uðs; lÞ,
where l is the system length in the slip plane normal. On the
f112g twinning plane, s is always along h111i and can be
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denoted by slip distance s. Treating s and l as control
variables, the total differential (d) of U is

dUðs; lÞ ¼ τAdsþ σnAdl; ð1Þ

where τ is the shear stress and A is the slip-plane cross-
sectional area. Applying the Legendre transformation to
Uðs; lÞ, we obtain the enthalpy and its total differential as

Hðs; σnÞ ¼ U − σnAl; ð2Þ

dHðs; σnÞ ¼ τAds − lAdσn: ð3Þ

The stress-dependent GSFE and GSFH can be defined
as [12]

ΨUðs; σnÞ ¼ ½Uðs; σnÞ −Uð0; σnÞ�=A and ð4Þ

ΨHðs; σnÞ ¼ ½Hðs; σnÞ −Hð0; σnÞ�=A ¼ ΨU − σnΔlðs; σnÞ;
ð5Þ

where Δl ¼ lðs; σnÞ − lð0; σnÞ is the slip-induced displace-
ment in the slip plane normal. In the above, Uðs; lÞ can be
computed directly in DFT or atomistic simulations. In the
RC slip process, the system is under constant σn. The final
equilibrium structure thus minimizes the system enthalpy
Hðs; σnÞ ¼ AΨHðs; σnÞ þHð0; σnÞ. For each σn, A and
Hð0; σnÞ are constant, ΨHðs; σnÞ is the critical quantity
to minimize.
Figure 1 shows the ΨHðs; σnÞ for W (Mo in

Supplemental Material [18]). For both elements, ΨH
increases or decreases under compression or tension. A
local energy valley or metastable SF first appears when
σn ≤ −10 GPa and −5 GPa for W and Mo, respectively,
indicating that the simple slipped configuration is stable
against perturbations in s near s ≈ 0.45jbj, where b ¼
h111i=2 is the lattice Burgers vector. Furthermore, the
barrier Ψutw

H to the SF is close but lower than Ψud
H for

completing the slip and forming the full dislocation. High
compressive stresses thus change the ΨH profiles of W and
Mo to that of ΨU of other bcc TMs and stabilize the SF,
which at least provides the basis structure for twin
nucleation and growth via subsequent slips on consecutive
f112g planes [6,47]. Below the threshold σn, no metastable
point is seen and the formed SF is unstable. The metastable
SF never appeared in any ΨUðs; σnÞ line (see Supplemental
Material [18]).
Figure 2 shows the optimized structures in W upon

removal of all ionic constraints (σn is kept constant). At low
compressive stresses (σn > −10 GPa), the slipped structure
is unstable and falls back to perfect bcc, consistent with the
lack of metastable SF on respective ΨH lines. At high
compressive stresses (σn ≤ −10 GPa), the slipped structure
is stable; the SF region consists of four atom layers
resembling a two-layer twin embryo similar to that in
other bcc TMs at σn ¼ 0 [Figs. 2(a) and 2(b) and Ref. [6] ].
The formed twin embryo is enclosed by two near-isosceles
twin boundaries (TBs); each TB is characterized by a dis-
placement δs along the twinning direction (between layers
5 and 6, 7 and 8) and a displacement δn perpendicular to the
twinning plane (see Supplemental Material [18]). These
local displacements vary among atom layers above and
below the slip plane, and are only captured in the RC slip
method. In the twinning direction, the critical slip s ≈
0.45jbj to the formation of the twin embryo is reached
earlier than s ≈ 0.6jbj to the full dislocation. Twinning is
thus expected to be activated first under shear coupled with
high compressive loadings. In addition, atoms above and
below the isosceles TBs have a local atomic environment
similar to that in hcp structures (see Supplemental Material
[18]). Specifically, the bcc f112g plane has the same
atomic arrangement as that of the hcp f101̄0g plane. At
s ≈ 0.45b, the four layers of atoms on the bcc f112g plane
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FIG. 1. The GSFH ΨHðs; σnÞ on the f112g twinning plane of
bcc W structures calculated as a function of σn using DFT.
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FIG. 2. SF structure computed for W by DFT. (a) A metastable
SF/two-layer twin embryo at s≈0.45b under σn¼−10GPa. (b) Lo-
cal atomic environment at σn ¼ −30 GPa by common neighbor
analysis (CNA) [48]: blue denotes bcc; red denotes hcp. (c) hcp unit
cell viewed along ½0001�.
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form four hcp f101̄0g-like atom planes. The structure
transformation is achieved by the displacement δs driven by
high compressive σn in Mo and W; similar displacements
occur spontaneously in other bcc TMs without σn. The
stabilization of the two-layer twin embryo enables rela-
tively easy twin growth via TB disconnections (see below
and Supplemental Material [18]). The critical stress σcn ≈
−10 GPa to stabilize the twin embryo is similar to that in
compression of W nanocrystals [7,8].
While the four-layer SF region does not have an exact

hcp structure, its close resemblance may allow qualitative
relation to be established between the metastable SF/two-
layer twin embryo and the hcp structure. To test this
hypothesis, we treat the two-layer twin embryo as a
stacking fault phase (SFP) of finite thickness (two layers),
in contrast to the conventional slip fault of zero thickness.
We derive the GSFE and GSFH expressions using a
sandwiched structure consisting of two bcc regions, one
SFP region, and two TB interfaces [Fig. 2(b)]. Following
Eq. (4), the GSFE is

AΨUðs;σnÞ¼USFP
3 ðs;σnÞ−Ubcc

3 ð0;σnÞþ2Aγiðs;σnÞ; ð6Þ

where U3 is the internal energy of the SFP=bcc region, γi is
the interface energy between the bcc bulk and SFP during
slip. ΨU can be computed exactly in DFT or atomistic
simulations.
The change of l in GSFH of Eq. (5) can be approximated

as

Δlðs; σnÞ ¼ lSFP3 ðs; σnÞ þ 2liðs; σnÞ − 3lbccf112gð0; σnÞ; ð7Þ

where lSFP3 and li are the stress- and slip-dependent
interplanar distances in the SFP and interfaces, and
lbccf112g is the stress-dependent bcc f112g plane interplanar
distance (see Supplemental Material [18]). Finally, the
GSFH can be expressed as

ΨHðs; σnÞ ¼
�
HSFP

3 ðs; σnÞ −Hbcc
3 ð0; σnÞ

�
=A

þ 2γiðs; σnÞ − σn
�
2liðs; σnÞ − 2lbccf112gð0; σnÞ

�
:

ð8Þ
The presence of the metastable SF requires

∂
2ΨH

∂s2 σn
> 0;

∂ΨH

∂s σn
¼ 0: ð9Þ

For small perturbations of s, the stability condition is

∂
2ΨH

∂s2 σn
¼ 1

A
∂
2HSFP

3

∂s2 σn
þ 2

∂
2γiðs; σnÞ
∂s2 σn

− 2σn
∂
2liðs; σnÞ
∂s2 σn

> 0: ð10Þ

The analysis is conceptually general up to this stage.
However, the partition of the SF energy into the SFP bulk
and interfaces is not quantitatively rigorous since the SFP is
only two atom layers surrounded by two additional layers
in similar local environments. Nonetheless, this approach
allows us to relate the sandwiched SF properties to the
computable properties of the SFP bulk and TBs.
Since the slip is localized along the slip plane only, we

may further assume that the interface energy γiðs; σnÞ and
length liðs; σnÞ are less sensitive (second-order effects) to
small perturbations in s thanHSFP

3 . In this case, the stability
condition becomes

∂
2ΨH

∂s2 σn
≈
1

A
∂
2HSFP

3

∂s2 σn
: ð11Þ

This step is perhaps a broad simplification but again is
necessary to relate the stability of the twin embryo to the
SFP properties. The total differential of the SFP enthalpy
can be written as

dHSFP
3 ¼ τAds − lSFP3 Adσn: ð12Þ

The stability condition of the twin embryo is thus

∂
2ΨH

∂s2 σn
¼ A

∂τ

∂sσn
> 0: ð13Þ

Considering a Cartesian coordinate system with x1, x2,
and x3 in the slip direction, slip direction normal, and the
slip plane normal, infinitesimal slip ds can be written as
ε5 ¼ ds=lSFP3 . The stability condition is simplified to

∂
2ΨH

∂s2 σn
¼ lSFP3

∂σ5
∂ε5σ3;ε1;ε2;ε4;ε6

> 0; ð14Þ

where the derivative is taken at constant σ3, ε1, ε2, ε4, ε6
following the loading conditions imposed in comput-
ing ΨH.
Assuming linear elasticity at infinitesimal strain ε5 and

using the σ3-stressed system as a reference, the change of
stress can be obtained by Hooke’s law as

Δσi ¼ σi − σrefi ¼ Cijεj; ð15Þ

where σi is the final stress and σrefi is the stress in the
reference state. Applying the condition Δσ3 ¼ 0 and
ε1 ¼ ε2 ¼ ε4 ¼ ε6 ¼ 0, we obtain

Δσ5 ¼
�
C33C55 − C2

35

�
ε5=C33: ð16Þ

The stability condition in Eq. (14) can be denoted using a
twinnability index ω defined in terms of the elastic
constants of the bulk SFP as
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ωSFP ¼ ∂
2ΨH

∂s2 σn
¼ C33C55 − C2

35

C33

> 0: ð17Þ

For W and Mo, we can treat the SFP as hcp and ωSFP is
then

ωhcp ¼ 1

2

�
Chcp
11 − Chcp

12

�
> 0; ð18Þ

where Chcp
ij is the elastic constant in the standard hcp unit

cell. Under large uniaxial stresses, the reduced index ωhcp is
less well defined since the hcp structure and its elastic
property lose symmetry and ωSFP should be used instead.
We now provide validations on the above stability

conditions. Since the relation in Eq. (17) is general, we
first consider the f111g plane GSFE ΨU lines in elemental
fcc metals where the stacking fault has an exact local hcp
structure at slip s ¼ h112̄i=6. In this case, ωSFP ¼ Chcp

44 .
Among nine fcc metals (Ag, Al, Au, Cu, Ir, Ni, Pd, Pt, Rh),
all except Pt exhibit a clearly well-defined metastable SF
with a positive curvature on DFT-based ΨUðs; 0Þ at s ≈
h112̄i=6 [49], consistent with the fact that all except Pt have
their Chcp

44 > 0 [50]. We next examine the ΨUðs; 0Þ profiles
of bcc Ti which is unstable at 0 K. For all three slip planes
(f110g, f112g, and f123g), the stability indices ωSFP can
be calculated using the elastic constants of the bcc
structure. In this case, all ωSFP are small and approach
zero, and the curvatures of the respective ΨU approach
zero, again consistent with the stability criterion (see
Supplemental Material [18]).
The above two cases have their SFP structures repre-

sented exactly by elemental structures and should have the
best agreement between ω and the presence of metastable
points on ΨU. For the bcc twinnability, we focus on the
domain where the SF is metastable and the SFP only
resembles the hcp structure, i.e., s ≈ 0.45jbj and σn ≤
−10 GPa in the current study. Figure 3(a) shows ω as a
function of normal stresses in W and Mo. At low stresses,

the elastic constants are calculated based on affine trans-
formation without optimizing ion positions. This constrai-
ned calculation is not ideal but necessary since the hcp and
SFP structures are mechanically unstable (C11 < C12,
C44 < 0) in these two elements. The stability conditions
in Eq. (17) and Eq. (18) are not satisfied in both Wand Mo.
On the other hand, high compressive stresses stabilize both
the hcp andSFP structures, leading toω > 0 andmeeting the
stability requirement (see Supplemental Material [18]).
Overall, the stress-driven stabilization of the hcp/SFP is
consistent with the stability of the SF on the respective
ΨH lines.
The stability condition can also be applied in group VB

TMs and Fe. Figure 3(b) shows the twinnability index ωhcp

based on Chcp at stress-free conditions by DFT [50]. Group
VB TMs and Fe have ωhcp > 0, satisfying the stability
criterion and in agreement with the presence of a metastable
point on their ΨU and the two-layer twin embryo at stress-
free conditions [6].
For Mo and W, the critical stresses cannot be determined

precisely using either ωSFP or ωhcp, nor is the current
simplistic model expected to give quantitative prediction.
Comparing the SFP=hcp model and the true sandwiched
SF, the largest discrepancies perhaps arise from the small
thickness of the SFP and the structure differences between
the hcp and SFP. To illustrate this point, we calculated the
elastic constants of the SFP and the hcp surrogate and
found non-negligible, quantitative differences in their
elastic constants and thus the critical compressive stress
satisfying the stability condition (see Supplemental
Material [18]). In addition, direct calculation of ΨH with
an interatomic potential [51] shows that the presence of the
metastable SF is also sensitive to other stress component
(e.g., σxz, Supplemental Material [18]). Nonetheless, in all
of the cases, the metastable SF/two-layer twin embryo is
only stabilized at high compressive stresses which in turn
favor twinnability. The twinnability index can also be
changed via alloying, as demonstrated in binary TaRe
and WRe alloys (see Supplemental Material [18]). Further
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SFP and hcp surrogates for W and Mo using DFT. The SFP/hcp structure is stabilized (C11 > C12) at high compressive σn. (b) ω for six
bcc transition metals at zero σn using their respective hcp elastic constants computed by DFT [50]. (c) Change of TB from the mirror
reflection at zero σn to the near-isosceles structure with a dissociated disconnection at σn ¼ −30 GPa. (d) Twin nucleation by a simple
shear at the twin tip and subsequent growth by dissociated disconnections in compression of W single crystal in 300 K MD simulations.
In (c),(d), atoms are colored by their local atomic environment identified by CNA [48]; blue denotes bcc; white denotes others.
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predictions in medium/high entropy alloys show qualitative
agreements with extant experiments.
Finally, we demonstrate the simple-slip twin nucleation

mechanism under compression using direct molecular
dynamics (MD) simulations with a spline modified
embedded-atom method (MEAM) potential for W [51].
This potential reproduces critical features of DFTΨHðs; σnÞ
for W (see Supplemental Material [18]). Figure 3(c) shows
the structures of the TB and TB disconnections. At zero
normal stress, the TB has a reflection mirror symmetry in
agreement with that in DFT and its ΨU profile. The TB
disconnection has a compact core with width similar to jbj.
With increasing normal stresses σn, the TB transforms from
mirror reflection to a near-isosceles structure. The TB
disconnection dissociates into a pair of partial disconnec-
tions of Burgers vectors δs and βs satisfying δs þ βs ¼ bt
(see Ref. [6] for details). In between the two partials, the TB
adopts the mirror structure, akin to SFs between Shockley
partial pairs in fcc structures. High compressive stresses
thus reverse the stability of the reflection and mirror TBs,
fully consistent with the DFT results in Fig. 2.
Figure 3(d) shows the nucleation and growth of a

twin in a pillar compressed along h110i at 300 K (see
Supplemental Material [18]). Upon reaching the critical
loading of 30 GPa (∼20 GPa in experiments [7]), a
deformation twin nucleates from the free surface. The
nucleation is carried out by slip between two f112g-plane
atom layers, leading to the formation of a two-layer twin
embryo as in the RC slip [Figs. 2(a) and 2(b)]. At the twin
tip, the localized slip advances quickly towards the pillar
center via a partial dislocation bs. The propagation of the
slip is simultaneously accompanied by twin thickening on
both sides of the twin embryo. The thickening process is
carried out by the nucleation and glide of partial twinning
disconnections of Burgers vectors δs and βs separated by
some TB segments of reflection symmetry. No dislocation
is observed in the entire compression process. Therefore,
under high compressive stresses, the barrier to twinning is
lower than that to dislocation nucleation; twinning is the
preferred deformation mechanism. The twin nucleation and
growth process in W is similar to that in other bcc TMs
exhibiting a metastable SF/two-layer twin embryo under
stress-free conditions [6]. Further discussion is provided on
the competition and prediction of critical conditions of
twinning (similar to that in fcc structures [10,11]), their
temperature dependence, and limitations in large-scale
systems in the Supplemental Material [18].
In summary, the origin of deformation twinning in bccW

and Mo is revealed by considering stress-dependent GSFH.
Stresses can change both the value and the profile of GSFH.
The profile change dictates the metastability of twin
embryos, which has not been widely recognized, but
may be general to other bcc TMs. For Mo and W, high
compressive stresses stabilize the previous unstable stack-
ing fault/two-layer twin embryo on the f112g twinning

plane. Above the critical stresses, twin nucleation can occur
via a simple slip between two atom planes as in other bcc
TMs. Stress affects both the twin nucleation and growth
paths, as well as the TB structures and disconnections. This
mechanistic understanding rationalizes a wide range of
extant experiments on deformation of Mo and W at small
scales. The present study thus provides a unified twin
nucleation mechanism and a computational method for
quantitative determination of twinning path and barriers
applicable to all bcc structures.
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