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a b s t r a c t

Nanocrystallization can significantly improve the strength and hardness of metallic ma-

terials, but usually sacrifice ductility due to low work hardening capability. Hetero-

structured materials are an emerging class of materials with superior performances,

because of their outstanding work hardening capability. In this work, a type of hetero-

structured material, a gradient structured Cu-Al alloy, was produced by surface mechanical

attrition treatment (SMAT) at liquid nitrogen temperature. After SMAT processing, the

yield strength was increased to more than 1.5 times, and the ductility remained almost

unchanged. In conjunction with hetero-deformation induced (HDI) hardening, stacking

fault energy is another important factor to increase the strain hardening in the system.

Low stacking fault energy increased the density of stacking fault, and led to a finer spacing

of nano twins (~5.4 nm) and higher dislocation storage (8 � 1013 m�2) in the SMATed Cu-Al

alloy at the intermediate strain stage. A significant up-turn of strain-hardening rate was

also induced by low stacking fault energy.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Materials with high strength and ductility are desired for

many industrial applications. Nano-grained materials usually
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show outstanding strength and hardness, while their ductility

is limited because of the poor work hardening ability [1e3]. In

the past decades, numerous researchers explored efficient

approaches to improve the combination of strength and

ductility [4,5]. The gradient-structured materials have been
ail.com (X. Zhu).

an open access article under the CC BY-NC-ND license (http://

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hzhou511@njust.edu.cn
mailto:xk_zhu@hotmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmrt.2022.05.027&domain=pdf
www.sciencedirect.com/science/journal/22387854
http://www.elsevier.com/locate/jmrt
https://doi.org/10.1016/j.jmrt.2022.05.027
https://doi.org/10.1016/j.jmrt.2022.05.027
https://doi.org/10.1016/j.jmrt.2022.05.027
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


j o u r n a l o f m a t e r i a l s r e s e a r c h and t e c hno l o g y 2 0 2 2 ; 1 9 : 2 2 0e2 2 9 221
proposed to enhance the yield strength and maintain

considerable ductility [5e10]. Lu [11] introduced nano

gradient-structural Cu rods by surface mechanical grinding

treatment (SMGT), which nearly doubled the yield strength of

coarse-grained sample. Additionally, the uniform elongation

of the nano gradient structured Cu was almost the same as

that of the coarse-grained sample. Gradient nanostructure is a

typical heterostructure material (HSM) [12e14]. HSMs are

usually composed of heterogeneous zones with dramatically

different constitutive properties [7,15e17]. It has been

demonstrated that the superior mechanical properties are

mainly attributed to the significant interactions between the

hetero-zones during deformation, which is related to the

strain gradient, geometrically necessary dislocations (GNDs)

pileups near the zone boundaries and the resulting hetero-

deformation induced (HDI) hardening [18,19]. The additional

HDI hardening helps with improving both the strength and

ductility [16,20,21].

For face-centered cubic (FCC) materials, such as Cu alloys,

the stacking fault energy (SFE) is another important factor that

affects the mechanical properties. Instead of perfect disloca-

tions, stacking faults (SFs) and nano twins (NTs) usually form

in the alloys with low SFE. It has been demonstrated that high

strain rate and low deformation temperature introducedmore

NTs formed during deformation. Recent studies showed that

the FCC alloys with low SFE exhibited a high strain hardening

rate and a good combination of strength and ductility, due to

the influence of SFs and twins [5,22e28]. Similar to HSMs, the

ductility of low SFE alloys were also affected by the high

strain-hardening in the system [29e33]. Thus, it is worthy to

explore the effect of SFE on plastic deformation in HSMs.

In the present study, we selected two typical Cu-Al alloys

with different SFEs, namely the Cu-4.5 wt.% Al (SFEs: 12 mJ/

m2) and the Cu-6.9 wt.%Al (SFEs: 5mJ/m2) reported in Ref. [34].

All the sampleswere deformed by SMAT under liquid nitrogen

temperature for 2 min to produce a gradient structured (GS)

layer on the surface of CG sheet. To clarify the hardening

behavior in different plastic deformation stages, microstruc-

ture evolution from the surface layer to center was charac-

terized by EBSD and TEM. Furthermore, the microstructural

evolution of the gradient layer at tensile strains of 0e0.22 was

systematically investigated. It is found that Low stacking fault
Fig. 1 e Optical micrography overlapped with distribution of m

alloy; (b) Cu-6.9wt% Al (SFE5).
energy leads to significant up-turn of strain-hardening during

deformation. Finer spacing of nano twins and higher dislo-

cation storage is achieved in the Cu-Al alloy with lower SFE,

corresponding to the hardening behavior under the corre-

sponding strain.
2. Experimental procedures

Commercial binary Cu-Al alloys with Al contents of 4.5 and

6.9 wt.%, prepared from high purity components (99.95 wt.%

Cu and 99.99 wt.% Al) by vacuum induction furnace, were

investigated in this work, respectively. The cast ingots were

rolled and machined into sheets with dimension of

100 � 50 � 4 mm3. A vacuum annealing was operated at 923 K

for 2 h to obtain a homogeneous coarse-grained microstruc-

ture. The surface mechanical attrition treatment (SMAT)

processing was carried out at liquid nitrogen temperature.

Before the SMAT deformation, two hundred stainless steel

balls with a diameter of 8mmwere placed into the chamber of

the SMAT machine. The vibration frequency of the SMAT

machinewas set as 50Hz. More detailed setting information of

SMAT can be referred to Ref. [11]. Both the surfaces of samples

were SMAT processed for 2 min to produce a gradient

microstructure.

Uniaxial tensile tests were performed on a SHIMADZU

Universal Tester, using dog-bone shaped samples with a gage

length of 15 mm and a transverse section of 4 � 5 mm2. The

samples for tensile testing were cut for the SMAT deformed

sheets having a thickness of 4 mm. As shown in Fig. 3a, the

upper and lower surfaces (colored in blue) are the treated

surfaces of SMAT. The uniaxial tensile tests and stress relax-

ation tests were performed at a strain rate of 5 � 10�4 s�1 at

room temperature. To ensure the repeatability and accuracy

of testing, at least 3 samples in each condition were per-

formed. Micro-hardness measurements were carried out with

a load of 25 g for a loading time of 15 s, and the average value

was obtained at least at 3 points at the same depth. The stress

relaxation test was loaded at a strain rate of 5 � 10�4 s�1 to a

certain strain state with a stroke holding for 50s, then was

reloaded at the same strain rate to the stress value. The

combination of loading and holding at this time is a small
icrohardness nearby the surface. (a) Cu-4.5wt% Al (SFE12)
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cycle, each large cycle consists of 5 small cycles. And each

sample performed at least 5 similar strain stage as a reference

for relative comparison.

The cross-sectional samples were primary polished using

sandpapers until 5000#, then polished by silicon dioxide pol-

ishing solution with 50 nm-scale, and finally removed the

mechanically damaged layers by ionic polishing. The samples

were observed on a field emission scanning electron micro-

scope (FE-SEM, NOVA Nano SEM 450, 250 KV) equipped with

an EBSD detector for the microstructure of the Cu-Al alloys

with the different strain states, i.e., the strains of 0, 0.05, and

0.22. The distribution of geometrically necessary dislocations

of the gradient structural Cu-Al samples were quantitated

using the Channel-5 software. TEM observations were con-

ducted on a JEM-2100 Plus transmission electron microscope

operated at 200 kV. The specimens were cut from the cross-

section direction of the sheets, and gently polished to a

thickness of ~80 mm. A twin-jet electrolytic polishing was

operated at 11.5 V and 23�C. The electrolyte for electrolytic

polishing was 5 vol% C2H5OH, 25 vol% H3PO4 and 50 vol% H2O.
Fig. 2 e TEM images of the SFE5 sample at different depth. (a), (b

2# (~110 mm) and 3#(~40 mm); (c-2) close-up high-resolution TEM
Samples for ionmilling were performed at 5 keV and 8� for 2 h

first, then were perforated at 4 keV and 5�. The broaden of the

observation area is carried out with a milling voltage and

angle of 2.5 keV and 3� for 2 h.
3. Results and discussion

We performed SMAT processing on two typical Cu-Al alloys

with very low stacking fault energies, i.e. Cu-4.5wt.% Al (SFE:

12 mJ/m2) and Cu-6.9wt.% Al (SFE: 5 mJ/m2) [34], which will be

hereafter referred to as SFE12 and SFE5 alloys, respectively. As

shown in Fig. 1, gradient structure is formed in both-surface of

the alloys, leading to a gradient distribution of microhardness

from surface to center of the samples. Fig. 1 (a) and (b) show

optical micrographs overlapped with the curves of hardness

distribution of cross-sectional SFE12 and SFE5 samples,

respectively. It is found that the hardness of the surface layer

is significantly increased in both the samples, which is

resulted from gradually decreasing strain rate with the depth.
) and (c-1) bright field TEM images at positions 1# (~200 mm),

image showing a nano-twin at the brown box in (c-1).

https://doi.org/10.1016/j.jmrt.2022.05.027
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Fig. 3 e The tensile properties of SFE12 and SFE5 samples before and after SMAT processing. (a) engineering stress-strain

curves, (b) histogram of yield strength, ultimate strength and uniform elongation, (c) strain hardening rate vs. true strain.
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A rapid reduction of hardness is found in the depth from 10

(~1.7 GPa) to 200 (~1.2 GPa) mm. However, the microstructure

observed by optical micrography is not clear enough to

explain the underlying mechanism of the strength nearby the

surface. We performed TEM characterizations on the posi-

tions 1#, 2# and 3# of the SFE5 sample to show more detailed

microstructure (Fig. 1b).

Based on the distribution of microhardness, three typical

positions at the depths of 200, 110 and 40 mm, are selected for

TEM observations. It is found that the depth of 200 mm reaches

the limit of SMAT deformation. Fig. 2a shows that perfect
Fig. 4 e Cyclical stress relaxation test of Cu-Al alloys. (a) and (b

respectively, inserted with true stress-time curves; (c) and (d) p

and SFE5 alloys, respectively.
dislocations are the main defects in grain interior at the po-

sition 1, as marked by the yellow arrows. While the density of

dislocation is relatively low, leading to slight enhancement of

the microhardness. With increasing depth, a significant in-

crease in dislocation density is observed at position 2 (Fig. 2b).

Clearly, perfect dislocations still exit at this position. Due to

the higher deformation strain, a large number of dislocation

tangles are formed in the grain interior. It is well established

that SMAT processing can produce an ultra-high strain at the

surface. K. Lu et al. reported that a high-strength nano-

crystalline grains in pure Cuwas produced at the surface layer
) true stress-strain curves of SFE 12 and SFE5 alloys,

hysical activation volume V* for different strains of SFE 12
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[11,35]. Owing to the extreme low stacking fault energy in the

alloys investigated here, high density nano-twins, co-existed

with nano stacking faults, are formed nearby the surface layer

(Fig. 2ce1). Contribution of nano stacking faults to yield

strength was raised by Jian et al. [36]. They proposed that the

relationship of yield strength is inversely proportional to the

average spacing of stacking faults. According to HallePetch

equation, the yield strength improved by grain boundaries is

inversely proportional to the square root of grain size

[32,33,37,38]. Thus, stacking fault are also effective in

strengthening, especially due to its ultra-nano space that is

difficult to obtain by grain refinement [39]. Fig. 2ce2 shows the

high-resolution TEM image in the area of a nano twin.

Although, the average thickness of the nano twins is only

~10 nm, the twins provide significant blocking effects on the

dislocations slipping in the {111} planes, as marked by the

white lines.

The typical tensile stress-strain curves of both the SFE12

and SFE5 samples before and after SMAT are shown in Fig. 3a.

Both the alloys show a significant improvement of yield stress,

from ~90 MPa to ~170 MPa, as shown in Fig. 3b. The yield

strength is increased to more than 1.5 times, due to the pro-

nounced work hardening induced by SMAT process. Inter-

estingly, the uniform elongation remains stable, especially in

the SFE5 sample, exhibiting 72.6% vs. 71.3% before and after
Fig. 5 e Evolution of mobile dislocation density with the third s

after SMAT; (c) and (d) SFE5 samples before and after SMAT. Inse

strain.
SMAT deformation (Fig. 3b). This result is different from the

long-established theory that work hardening is usually at the

expense of ductility in most of the metallic materials. Fig. 3c

shows the strain hardening curves of the SFE12 and SFE5 al-

loys. Clearly, both the strain hardening rates of SFE5 samples

exhibit a notable up-turn (from the strain of 0.02e0.2), while is

not visible in the SFE12 sample. The up-turn of strain hard-

ening rate keeps a stable deformation and delays the necking

of the tensile samples. Thus, the uniform elongation of

SMATed SFE5 alloy is much better than that of SFE12 alloy. A

single gradient layer with a thickness of about 400 mm can

increase the yield strength by nearly 90% for a 4mm thick bulk

material with little loss of ductility, and the potential strain

hardening mechanism is worth investigating.

Fig. 4a and b shows the repeated stress relaxations for Cu-

Al alloys. The SFE12 sample exhibits less significant stress

drop Ds in each relaxation cycle than the SFE5 sample. Ac-

cording to the method introduced in Ref. [40], the physical

activation volume, V*, can be extracted from consecutive

relaxation transients in repeated stress-relaxation texts. We

plot the V* of SFE12 and SFE5 alloys in Fig. 4c and d, respec-

tively. Clearly, the initial V* in coarse grained SFE5 alloy

(~370 b3) is much lower than that of SFE12 sample (~500 b3).

With the increasing of true stress, the values of V* in both the

alloys are decreased. Previous study revealed that the high-
tress relaxation (50s). (a) and (b) SFE12 sample before and

t, the value of rm=r0 after relaxation as a function of starting

https://doi.org/10.1016/j.jmrt.2022.05.027
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density twins in ultrafine crystalline copper can effectively

reduce dislocation free-range [40]. Owing to the low stacking

fault energy in Cu-Al alloy, stacking faults and deformation

twins are easy to formwith straining. In contrast, the initial V*

of SMATed samples are relatively low, SFE12 ¼ 261 b3 and

SFE5 ¼ 258 b3. Due to the blocking effect by SFs and NTs, the

free dislocation swept area is limited in the SMATed samples,

thus the initial V* of SMATed samples is much lower than the

coarse grained one.

For the plastic flow controlled by thermally activated

dislocation glide, the dislocation velocity is given by Ref. [41]:

y¼ y0 expðDt
*$V*

kBT
Þ

where T is the temperature; kB is the Boltzmann constant; t* is

the thermal component of the shear stress, y0 is the initial

dislocation velocity at t ¼ 0, and Dt* is the change of t* from

time t ¼ 0 to time t; Dt* < 0 indicates a typical stress transient.

It is usually assumed that themobile dislocation density rm

and the dislocation velocity y are related by an empirical

power law:

rm

r0
¼ð y

y0
Þb

where b is a dimensionless immobilization parameter, r0 is

the dislocation density at the start of the transient.
Fig. 6 e EBSD images of Cu-Al alloys with different tensile strain.

0.05 and 0.22; (a-3) distribution of dislocation density with depth

with strains of 0.05 and 0.22; (b-3) distribution of dislocation de

by Eq.(3), and the KAM data were exported from Fig.6aeb by Ch
As shown in Fig. 5a and b, the mobile dislocation density

rm=r0 in coarse grained alloys exhibits a continuous reduction

with straining. This phenomenon usually occurs in homoge-

neousmaterials. In a sharp contrast, the values of rm=r0 show

an unexpected increase during the early stage of tensile

testing, as shown in Fig. 5c and d. Interestingly, the value of

rm=r0 in SMATed SFE5 alloy shows a higher up-turn to more

70% than that of SFE12 alloy. Thus, both the gradient micro-

structure and low stacking improve the strain-hardening

capability of Cu-Al alloy.

As mentioned above, SMAT processing at liquid nitrogen

produces a good combination of strength and ductility in Cu-

Al alloys, especially in the SFE5 alloy. It has been well estab-

lished that SFs and NTs are easier to form in the alloys with

lower SFE during plastic deformation [42e44]. To investigate

the in-depth deformation mechanism, the evolution of GNDs

were quantitatively analyzed by EBSD. Based on strain

gradient theory [45,46], the distribution of GND is revealed by

Eq (3):

rGND ¼2KAMave

mb
(3)

where rGND is the density of geometrically necessary disloca-

tions, KAMave is the average of the kernel average misorien-

tation, m is the step size of EBSD, and b is the Burgers vector of

dislocation.
(a-1) and (a-2) KAMmappings of SFE12 alloy with strains of

in SFE12 alloy; (b-1) and (b-2) KAM mappings of SFE5 alloy

nsity with depth in SFE5 alloy. The GND density calculated

annel5.
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Fig. 6 show the KAM images of the SMATed SFE12 and SFE5

samples with different tensile strains, in which two typical

strain of 0.05 and 0.22 are selected for EBSD analysis. At the

early stage of deformation (ε ¼ 0.05), both alloys show a

gradient distribution of GNDs, which exhibit highest GND

density at the surface. As the tensile strain is increased to 0.22,

the GND density in the depth of coarse-grained layer is

increased significantly (Fig. 6be1 and b-2). Fig. 6ae3 shows

that the GND density at the surface is stable at about

6� 1013m�2, which at center (in depth of ~600 mm) is increased

from 3 � 1013 m�2 to 6 � 1013 m�2. Thus, it is reasonable to

imply that highest dislocation density in the SFE12 alloy is

near 6 � 1013 m�2. In contrast, the GND’ s density at surface of

SFE5 is still increased from 5 � 1013 to 8 � 1013 m�2 (Fig. 6be2).

The dislocation storage in SFE5 alloy is higher than SFE12

alloy.

Fig. 7 show the bright field TEM images of SFE12 and SFE5

alloys with different tensile strain (ε ¼ 0, 0.05 and 0.22,

respectively). Due to the different stacking fault energy,

deformation mechanisms of the alloys are not same. As

shown in Fig. 7ae1 for the SFE12 sample, the defects in grain

interior are dominated by perfect dislocations. A small

amount of stacking faults also exist as marked by the pink

lines. As the sample is tensile deformed for 0.05 of strain,

dislocation tangles as well as the nano twins formed

(Fig. 7ae2). Fig. 7ae3 shows a higher strain of 0.22. Clearly,

high density of deformation twins with nano size are formed.

Thus, the main deformation mechanism in SFE12 alloy is

dislocation slipping and twinning. Fig. 7be1 to b-3 show the

microstructure of SFE5 alloy with same deformation strain.
Fig. 7 e Bright-field TEM images of the SMATed Cu-Al alloys at

sample with ε ¼ 0, 0.05 and 0.22, respectively; (b-1), (b-2) and (b

and (b-4) statistic distribution of twins' thickness in the SFE12
The biggest difference is that the density of nano-stacking

faults in SFE5 alloy is much higher. As a result, the thickness

and density of nano twins formed in SFE5 alloy aremuch finer

and higher than those of in SFE12 alloy. Deformation twins in

fcc metals are believed to be formed by the glide of partial

dislocations with the same Burgers vector on successive

planes [44]. Owing to the lower stacking fault energy, the

average thickness of NTs in the SFE5 alloy (5.0 nm) is much

smaller than that of in the SFE12 alloy (24.7 nm), as shown in

Fig. 7ae4 and b-4.

Fig. 8a shows a high-resolution TEM image of nano twins

in SMATed SFE5 alloy from zone axis of [110]. The density of

twin is very high, exhibiting an average thickness of ~5.4 nm

(Fig. 8b). High density of nano twins have been demon-

strated to not only improve the strength efficiently, but also

to maintain a good ductility in Cu alloys [33,37,47,48]. As

shown in Fig. 8c, nano stacking faults co-exist with nano

twins in the SMATed sample. It has been proposed that

deformation twins in fcc metals are formed by glide of

partial dislocations with the same burgers vector on suc-

cessive planes. The twinning partial dislocations are all

Shockley partials, with a Burgers vector of b ¼ 1/6<112>,
which can glide on the slip plane [44]. Thus, lower stacking

fault energy introduces more twinning partial dislocations

to form nano-twins in SFE5 alloy.

Microstructure evolutions in the SMATed SFE12 and SFE5

alloys are different, owing to their different stacking fault

energies. Thus, the mechanical properties, such as straining

hardening abilities, are also different during tensile defor-

mation. Fig. 9a and 9b shows the schematic diagram of
a depth of ~80 mm from surface. (a-1), (a-2) and (a-3) SFE12

-3) SFE5 sample with ε ¼ 0, 0.05 and 0.22, respectively; (a-4)

and SFE5 alloys with 0.22 of tensile strain.

https://doi.org/10.1016/j.jmrt.2022.05.027
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Fig. 8 e Atomic-scaled TEM image of nano twins in 0.22 tensile deformed SFE5 alloy from [110] zone axis. (a) HRTEM image,

(b) intensity of nano-twins contrast in (a), (c) close-up atomic microstructure of the brown box in (a).

Fig. 9 e Schematic diagram of deformation mechanism of SMATed samples at different stages in work hardening curves. (a)

SFE12 alloy; (b) SFE5 alloy.
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deformation mechanism of SFE12 and SFE5 alloys, respec-

tively. At the beginning (Stage I) of tension, both the alloys

show mixed perfect dislocations and stacking faults in grain

interior. In the Stage II, both the stacking faults and nano

twins are formed in SFE12 alloy, while nano twin is almost

absent in SFE5 alloy. Note that, a significant up-turn of

strain-hardening rate happens in this stage, contributing to

interaction of high-density stacking faults. In the Stage III,

deformation twinning is dominated in the SFE12 alloy. In

contrast, stacking faults are still continuous formed in the

SFE5 alloy, providing additional strain hardening to delay the

necking. As such, reducing the stacking fault energy is

considerable for improving the strain hardening of Cu-Al

alloys.
4. Conclusions

In this work, two Cu-Al alloys with different stacking fault

energies were SMAT processed at liquid nitrogen tempera-

ture. The key findings are summarized below:

(1) Nano gradient structured Cu-Al alloys are produced by

SMAT processing, leading to a gradient distribution of

microhardness form surface to center. There are three

typical layers at the depth of 40, 110 and 200 mm,

respectively: (i) High density nano-twins and stacking

faults co-exist in the layer nearby the surface; (ii) A large

number of perfect dislocation entangles formed in the

https://doi.org/10.1016/j.jmrt.2022.05.027
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sub-surface layer; (iii) perfect dislocations dominate in

the deformation influenced layer.

(2) The combination of mechanical properties are

improved after SMAT. The yield strength of both alloys

is improved to more than 1.5 times after SMAT, and the

ultimate strength of the samples after SMAT is slightly

higher than that of CG samples. While the SFE5 alloy

after SMAT exhibits higher ductility than the SFE12

alloy. The strain hardening rate of SFE5 alloy exhibits a

notable up-turn during tensile deformation, intro-

ducing a more stable deformation to delay the necking.

(3) Low stacking fault energy increase density of nano-

stacking faults, leading to finer spacing of nano twins

(~5.4 nm) and high dislocation storage (8 � 1013 m�2) in

the SMATed SFE5 alloy at the intermediate strain stage.

The significant up-turn of strain-hardening rate in SFE5

alloy is also induced by low stacking fault energy.
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