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Bulk nanoSPD materials are materials with nanostructural features, such as nanograins, nanoclusters, or nanotwins, produced by
severe plastic deformation (SPD) techniques. Such nanostructured materials are fully dense and contamination free and in many
cases they have superior mechanical and functional properties. Here, we provide a critical overview of such materials, with a
focus on the fundamentals for the observed extraordinary properties. We discuss the unique nanostructures that lead to the superior
properties, the underlying deformation mechanisms, the critical issues that remain to be investigated, future research directions,
and the application potential of such materials.
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1. Introduction In recent years there has been grow-
ing interest in bulk nanostructured materials produced
by severe plastic deformation (SPD) processing, as
demonstrated by the increasing number of publications
with high citations [1] as well as numerous specialized
conferences, workshops and symposia on the subject
(www.nanospd.org).

The critical feature of SPD, in which heavy straining
is applied under high pressure with accumulated strains ε

in excess of ∼ 4–6, makes it possible to produce ultrafine
grains (UFG) with sizes smaller than 1,000 nm.[2–5]
Processing by SPD may also lead to a dissolution of
second phases, precipitation, amorphization, and other
processes producing various nanostructural features such
as deformation twins, non-equilibrium grain bound-
aries, dislocation substructures, solute segregation,[6]
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and clusters. These changes in the inner make-up of
the material may affect the deformation mechanisms
and, consequently, change the material properties in a
fundamental way. As a result, new structural and func-
tional metals and alloys having superior and unique
properties have been developed by SPD processing.
[4,7–10]

Over the last decade there has been extensive
research into the mechanical and functional properties
of bulk nanostructured materials as well as their ori-
gin and relationship to fundamental physics. This report
gives a critical overview of this research with special
attention directed to the extraordinary properties that are
enabled by SPD. Our views on the prospects for future
developments in the area of nanoSPD materials are also
outlined.

© 2015 The Author(s). Published by Taylor & Francis.
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2. Grain Boundaries and Other Crystal Lattice
Defects Generated by SPD Grain boundaries in
nanostructured materials affect their properties in very
significant ways and quite often the UFG metals are
referred to as ‘interface-controlled materials’. Different
types of grain boundaries are formed by SPD processing
and they may be classified as [2,7]

• Low- vs. high-angle boundaries;
• Special vs. random boundaries;
• Equilibrium vs. non-equilibrium boundaries with

strain-distorted structures.

In addition, SPD may also produce other structural
features in alloys, such as second-phase particles, nan-
otwins, and solid segregations at the grain boundaries.
Such modifications of the make-up of the material at
the nano scale can have a strong effect on the material
properties. The use of advanced imaging and struc-
tural characterization techniques over the past decade
has brought about the discovery of three significant
nanostructural features of SPD-processed alloys,[8,10–
16] which give rise to their remarkable mechanical and
functional properties. These are outlined below.

2.1. Nanotwins. A high density of nanotwins pro-
duced by SPD was found to increase both the strength
and ductility of nanostructured metals and alloys.
Figure 1 shows a transmission electron microscopy
(TEM) image of UFG Cu after equal-channel angular
pressing (ECAP) and cryorolling at the liquid nitro-
gen temperature; twins 10–20 nm in width are clearly
visible.[12] To promote the formation of nanotwins,
the following intrinsic material properties and external
deformation conditions are required [11]: (1) a relatively

Figure 1. Typical bright-field TEM images of a grain with
high density of deformation nanotwins in UFG Cu that was
subjected to ECAP and subsequent cryogenic rolling.[12]

low stacking fault energy, (2) a low deformation temper-
ature, and (3) a high strain rate. It should be noted that
there is an optimum grain size range conducive for defor-
mation twinning.[11,17–19] This optimum grain size for
the formation of deformation twins is affected by both
intrinsic properties of the material mentioned above, and
it can be estimated using the following equation [11]:

dm

ln(
√

2dm/a)
= 9.69 − ν

253.66(1 − ν)

Ga2

γ
, (1)

where γ is the stacking fault energy, a is the lattice
parameter, ν is Poisson’s ratio, G is the shear modulus,
and dm is the optimum grain size.

2.2. Clusters and Segregations. It was found by 3D
atom probe tomography that SPD may hinder the for-
mation of precipitates in age-hardenable alloys and
instead promote clustering and segregation of alloying
elements.[7,15,20–22] For example, the data in Figure 2
[23] show that segregations at grain boundaries make-up
clusters ∼ 3–5 nm wide in the age-hardenable Al alloy
7075. Moreover, the concentration of alloying elements
may be an order of magnitude higher at grain boundaries
than in the grain interior.[8,20,22,23]

2.3. Nanosized Particles and Secondary Phase
Precipitations. In many alloys subjected to SPD after
solid-solution hardening, high densities of nanosized
particles appear.[8,10,24] Figure 3 shows an example
of nanoparticles that are ∼ 10–20 nm in size in the
UFG Al alloy 6061 after ECAP.[24] The presence of

Figure 2. Tomographic image of nanostructure of UFG Al
alloy 7075. Segregations of alloying elements on grain bound-
aries and at triple junctions are shown.[22]
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Figure 3. UFG structure of Al alloy 6061 after ECAP in parallel channels (four passes): nanosized precipitations in grains are
clearly visible in areas A and B at higher magnification.[24]

these nanoparticles is due to dynamic aging and the
high density of nucleation sites generated by entangled
dislocations. The small size and high density of such
particles effectively block and accumulate dislocations
not only causing higher strength but also promoting
ductility.[13,23–25]

Thus, UFG metals and alloys produced by SPD
methods are characterized by a number of nanostructural
features which can strongly influence their behavior.
In many demonstrated cases, the properties induced by
SPD processing are unique to these materials, as will be
shown in the following sections.

3. Mechanical Properties of Bulk Nanostructured
Materials Three major properties, namely strength,
fatigue behavior and superplasticity, are considered in
this section.

3.1. Superior Strength and Ductility. A primary
advantage of SPD processing is strength enhance-
ment. Even though the well-known Hall–Petch relation
between the yield stress σy and the grain size d,

σy = σ0 + KHPd−1/2, (2)

may break down for nanomaterials, it commonly holds
for UFG materials produced by SPD. Here, σ0 and KHP
are constants for a given material. Typically, extreme
grain refinement by SPD can improve the strength of
pure metals or dilute alloys by a factor of 3–8.[26–
30] For SPD-processed alloys, grain refinement is often
accompanied by phase transformations leading to the
formation of nanoclusters, segregations, nanotwins, and

dislocation substructures, which provide additional hard-
ening mechanisms. In particular, the formation of grain
boundary segregations in the UFG alloys by SPD may
suppress the generation of dislocations at grain bound-
aries and lead to considerable additional hardening.[23]
For example, Figure 4 shows the tensile stress–strain
curves of the Al alloys 1570 and 7475. It is seen that
the alloys which acquired their UFG structure by high-
pressure torsion (HPT) are more than twice as strong as
those subjected to conventional hardening.

It was shown [23] that for bulk nanostructured
alloys with a grain size of 100–130 nm, the magnitude of
σ y is considerably higher than the value calculated from
the Hall–Petch relationship. This phenomenon of super-
strength of nanostructured alloys was recently demon-
strated in various SPD-processed materials, including
Al alloys,[24,31] Ti alloys,[8] carbon steels and stain-
less steels,[32–34] and in an Al–Mg nanocomposite.[35]
However, increasing strength of metals and alloys
through grain refinement by SPD usually leads to an
undesirable drop in their ductility.[8,10,36,37]

The low ductility is caused by the reduction of the
strain-hardening capability of a severely deformed mate-
rial. This can be rationalized in terms of the Considère
criterion which states that failure by necking under ten-
sile loading will not occur if the following inequality is
fulfilled: (

dσ T

dεT

)
ε̇

≥ σ T, (3)

where σ T and εT denote the true stress and true
strain, respectively. On the other hand, grain refinement
enhances the strain rate sensitivity (SRS) of the flow
stress and this helps preventing necking.[38] Therefore,
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(a)

(b)

Figure 4. Engineering stress–strain curves of the UFG alloys
Al 1570 (a) and Al 7475 (b) processed by HPT in comparison
with standard treatment.[23]

these two factors compete with each other in affecting
the tensile ductility.[39] The effect of the SRS increase
is usually weaker than the effect of the strain-hardening
reduction, which explains the low ductility of UFG
materials except at relatively high homologous tempera-
tures. Indeed, high ductility was reported in nanostruc-
tured zinc [40,41] which has a low melting point of
692.68 K.

There have been some exceptions where UFG
and nanostructured metals exhibited both high strength
and high ductility.[42–47] The primary reason for the
low ductility of nanostructured and UFG metals and
alloys is their low strain-hardening rate. In recent years,
great efforts were made to design microstructures and
deformation mechanisms that will increase the strain-
hardening rate, some of which lead to an increase in both
strength and ductility.[5,25] Reported successful strate-
gies include inducing effects that promote the occur-
rence of a high density of twin boundaries,[12,48,49]
lowering the stacking fault energy to activate defor-
mation twinning,[12,14,50] introducing a high density
of second-phase nanoparticles,[13,51] or through grain
boundary engineering.[52,53] More recently, an alterna-
tive strategy that relies on gradient structures was shown
to be very effective in improving ductility.[54–57]

Figure 5. Empirical correlation between the fatigue limit and
the UTS for UFG Ti and Al alloys.[59]

3.2. Fatigue Behavior. Fatigue resistance is impor-
tant for many applications of UFG materials and there
has been extensive research in this area. Recent liter-
ature surveys on fatigue properties of SPD-processed
materials can be found elsewhere.[9,58,59] Empirically,
the fatigue limit of coarse-grained materials is propor-
tional to the ultimate tensile strength (UTS) (Figure 5)
[59] which may be used to estimate the fatigue limit.
However, the fatigue behavior of SPD-processed metals
in general is determined by both strength and ductility.
Specifically, high-cycle fatigue (HCF) is controlled by
the resistance of the material to crack initiation, while
low cycle fatigue (LCF) is governed by crack propaga-
tion. The life under LCF is largely controlled by ductility
while that under HCF is dictated by the fracture strength.
Consequently, when SPD processing raises the tensile
strength at the cost of ductility, the HCF life is improved
while the LCF life is decreased. Again, there are for-
tunate exceptions to this disadvantageous juncture. It
was found [60,61] that ECAP of dilute Cu–Cr–Zr alloys
followed by an aging treatment leads to a remarkable
improvement of tensile strength and fatigue strength in
the HCF regime without sacrificing ductility and LCF
properties. Similarly, extrusion + ECAP processing of
the ZK60 Mg alloy was shown to lead to an excel-
lent combination of strength and ductility [62] and also
brought an impressive improvement of fatigue proper-
ties over the entire range of stress amplitudes tested (see
Figure 6).[63]

SPD processing also produces good fatigue perfor-
mance in other metals and alloys. For example, it was
reported [64] that an ECAP-processed stainless steel had
a record-high fatigue limit due to profuse deformation
twinning induced by severe straining. Another exam-
ple is SPD-processed commercial purity titanium that
showed record values of fatigue strength (which were
close to or in excess of those for the conventional alloy
Ti-6Al-4V).[65–67] These results make it promising
to replace this potentially toxic alloy with pure Ti in
biomedical applications (see Section 4.8).
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Figure 6. Wöhler plot for Mg alloy ZK60 in the as-received
condition (open symbols) and after processing by integrated
direct extrusion and ECAP.[63]

3.3. Superplasticity. Superplasticity refers to the
ability of a polycrystalline specimen to pull out to a very
high strain, defined typically as an elongation of at least
400%,[68] when tested in tension. The development
of a superplastic capability in polycrystalline materials
is significant because of the increasing importance of
the superplastic-forming industry in the manufacture of
complex parts having curved surfaces.[69] Superplastic-
ity requires a small grain size, typically below ∼ 10 μm,
and it is now recognized that the dominant flow pro-
cess is grain boundary sliding in which the strain rate
varies inversely with the grain size raised to a power of
2.[70] This means in practice that the extremely small
grain sizes produced by SPD processing provide a pos-
sibility for achieving superplastic flow at exceptionally
rapid strain rates. This was first demonstrated in early
experiments on two commercial aluminum-based alloys
where elongations of up to 1,000% were attained at
strain rates of 10−2 s−1.[71] This result suggests that
an SPD material should exhibit a rapid superplastic-
forming capability directly after processing and this was
demonstrated by using a biaxial gas-pressure-forming
facility and blowing a dome in an SPD-processed Al–
Mg-–Sc alloy in the short period of only 60 s.[72] Exper-
iments also confirmed that the superplastic properties
were retained when the material was processed by ECAP
and then rolled into a sheet.[73]

Although it is relatively easy to achieve excep-
tional grain refinement in face-centered cubic metals,
the situation becomes more difficult in hexagonal close-
packed metals such as magnesium because of the limited
number of available slip systems. To overcome these
difficulties, a two-step processing route was developed
in which some initial grain refinement is introduced
through extrusion prior to processing by ECAP.[74] The
effect of this procedure is illustrated in Figure 7 where
results are shown for a Mg–8% Li alloy tested in tension
over a range of strain rates at 473 K in a cast condition,

Figure 7. Elongation vs. strain rate at 473 K for a Mg–8% Li
alloy in the cast condition, after casting and extrusion, and after
casting and extrusion followed by ECAP.[75]

after casting and extrusion and after casting and extru-
sion followed by processing by ECAP.[75] The changes
introduced by these different processing routes are dra-
matic because the alloy is not superplastic in the cast
condition, it is only marginally superplastic after cast-
ing and extrusion, but in the cast + extrusion + ECAP
condition it is possible to achieve high elongations of
up to 1,800%. Using this two-step processing route, it is
feasible to achieve excellent superplastic elongations in
magnesium alloys and an example is shown in Figure 8
where a ZK60 Mg–Zn–Zr alloy was pulled to failure at
an elongation of 3,050%.[76] In practice, even larger
superplastic elongations may be attained in aluminum-
based alloys processed by ECAP and there is a recent
report of an elongation of 4,100% in an Al–Mg–Sc–Zr
alloy when tested at 723 K at a strain rate of 5.2 × 10−2

s−1.[77] Finally, it is important to note that, despite the
very small cross-sectional areas of the tensile specimens
processed by HPT, it is again possible to achieve excel-
lent superplastic properties with an elongation of 1,800%
recorded in an HPT-processed Zn–22% Al eutectoid
alloy when pulled to failure at 473 K at a strain rate of
1.0 × 10−1 s−1.[78]

4. Functional Properties of BNM Nanostructuring
of metals may also enhance various functional proper-
ties or produce new physical and chemical properties,
thereby making them attractive for innovative engineer-
ing and medical applications. This section reviews the
features and nature of the unusual functional properties
observed in bulk nanostructured materials.

4.1. Electrical Conductivity in Ultrafine-grained Mate-
rials. It is well known that Ag, Cu, Au, and Al
are metals with high electrical conductivity (111%,
100%, 78%, and 64% International Annealed Cop-
per Standard [IACS], respectively). In addition to high
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Figure 8. Appearance of a tensile specimen of a ZK60 magnesium alloy pulled to failure at 3,050% after extrusion and ECAP;
the upper specimen is untested.[76]

conductivity, high mechanical strength of these met-
als is required for certain applications. Strengthening
is generally achieved through strain hardening, solid-
solution hardening, precipitation hardening and grain
refinement. However, these strengthening mechanisms
also lead to lower conductivity because of electron
scattering by crystal lattice defects. Recent studies
reveal new ways of solving this problem by grain
refinement.

The evolution of mechanical properties and electri-
cal conductivity with strain was investigated for pure
Cu processed by ECAP,[79–82] accumulated roll bond-
ing (ARB),[83–85] and HPT.[82] As summarized in
Figure 9, in pure Cu (99.99%) the hardness increases
and electrical conductivity decreases with increasing
equivalent strain in the early stages of straining and
both level off to constant levels (130 Vickers hardness,
88% IACS) at equivalent strains exceeding ∼ 20.[82]
However, the electrical conductivity decreased by only
∼ 12% whereas the hardness increased by ∼ 270% at
this saturation level. Subsequent annealing improved
the electrical conductivity to 97% IACS while the
hardness increment was maintained at a higher level
of ∼ 160% (80 Vickers hardness) when compared to
the annealed state (50 Vickers hardness). A Corson
alloy was processed by HPT and achieved a high
strength ( ∼ 1 GPa).[86] Furthermore, subsequent aging
increased the strength to ∼ 1.1 GPa and improved the
electrical conductivity to an acceptable level of ∼ 30%
IACS.

The advantageous effects of HPT processing on
the strength and electrical conductivity of Cu–0.7%Cr,
Cu–0.9%Hf, and Cu–0.7%Cr–0.9%Hf alloys were
demonstrated.[87] It was reported that pure copper
exhibits a high strength over 1 GPa and an electrical
conductivity as high as 97% IACS.[48] The sample was
synthesized using a pulsed electrodeposition technique
which produced grain sizes of 100–1,000 nm contain-
ing a high density of nanotwins. The significance of
nanotwinning is that twin boundaries block dislocation
motion but have little effect on the electrical resistivity.
Such combinations of properties are yet to be matched
by SPD processing but the above examples suggest that
this is potentially achievable.

(a)

(b)

Figure 9. (a) Vickers microhardness and (b) electrical resis-
tivity/conductivity plotted against equivalent strain for samples
processed by SPD methods.[82]

Another requirement for electrical conductors is
light weight and this is especially important for appli-
cations in motors, robots, and power transmission lines.
Aluminum is the lightest among the high conductivity
metals. It was reported [88,89] that UFG Al–Mg-–Si
alloys processed by ECAP and HPT exhibit a good
combination of increased mechanical properties and
enhanced electrical conductivity. The increased con-
ductivity was due to second-phase precipitation which
reduced the solute concentration in the Al matrix. It
was proposed that processing at elevated temperatures
to induce dynamic aging may be promising for contin-
uous wire production.[90] Taking advantage of the low
solubility of Fe in Al ( ∼ 0.05 wt%) and a fine eutectic
structure at ∼ 1.8 wt%Fe, an Al–Fe alloy was processed
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by HPT and subsequent aging which resulted in a high
strength of 600 MPa and a high conductivity of > 50%
IACS.[91,92]

4.2. Giant Magnetoresistance (GMR) Produced by
HPT. When ferromagnetic particles are finely dis-
persed in a non-magnetic matrix, magnetoresistance
(MR) appears with an isotropic feature. This isotropic
MR is called GMR if the MR ratio reaches a magni-
tude of more than a few tens of percent.[93–100] The
Cu–Co system is known as a good candidate for GMR
as ferromagnetic Co particles with little solubility of
Cu coexists in the Cu matrix.[101] A Cu–10wt%Co
alloy was processed using HPT to achieve a fine dis-
persion of ferromagnetic particles and MR was reported
at a level ∼ 2.5% at 77 K with an isotropic feature
(Figure 10).[102] The appearance of MR was also con-
firmed in a Cu–22wt%Fe alloy.[103] While the achieved
magnitudes of the MR do not qualify as GMR, the
results show that HPT is at least potentially promising
for creating GMR in alloys.

4.3. Enhanced Hydrogen Storage Performance of
SPD-processed Materials.

4.3.1. Mg and Mg Alloys. Since 2004, ECAP has
been used to process nanometals for hydrogen storage,
particularly Mg and its alloys (ZK60) (Figure 11).[104–
106] The advantages of ECAP over ball milling include
prevention of oxidation, which can seriously inhibit
absorption/desorption of H2, and the low production
cost as large volumes of material can be efficiently pro-
cessed using ECAP. Furthermore, ECAP avoids health
hazards common to toxicity-prone nanopowder-based
processes.

Figure 10. Variation of MR ratio with magnetic field in
two different directions (X and Y) for HPT sample after
N = 25 revolutions, where the definition of X and Y is as
illustrated.[102]

Figure 11. Hydrogen storage kinetics showing high per-
formance of ECAP-processed ZK60 alloy compared to its
ball-milled counterpart (desorption,[104,105]).

A critical requirement for energy storage is stabil-
ity of the storage capacity and the absorption/desorption
kinetics over large numbers of cycles. Ball-milled
Mg and Mg alloys rarely meet this requirement
unless catalysts are added.[107] As seen in Figure
12, ECAP-processed ZK60 shows high stability of
both its capacity for hydrogen uptake and the hydro-
genation/dehydrogenation kinetics for at least 1,000
cycles.[105] This was also confirmed for HPT-processed
ZK60 for at least 100 cycles (Figure 13,[108]). How-
ever, not all SPD-processed materials show high stabil-
ity. There are several reports [109–111] that ARB- or
HPT-processed MgH2 powder has good kinetics but low
stability and this was confirmed by a recent high-cycle
study [108] as shown in Figure 14. After 40 cycles, the
capacity of hydrogen loading clearly decreased. Com-
paring the long-time stability of SPD-processed mate-
rials ZK60 and MgH2, it was concluded that the SPD
processes in both materials provide nucleation sites for
hydride formation which are, however, not stable in the
case of SPD-processed pure MgH2. In that material, it
is the comparably large volume of the hydride particles
which decreases the hydrogen loading capacity as the
hydrogen diffusion becomes sluggish compared with the
non-hydrogenated substance.[108]

4.3.2. TiFe Alloys. The TiFe intermetallic with
B2-type crystal structure is a well-known candidate for
stationary hydrogen storage because of its low hydro-
genation temperatures, reversible hydrogenation fea-
tures, high hydrogen storage capacity, and low price.
However, its practical application is limited as it
requires an activation process before hydrogenation,
which includes exposure to hydrogen atmosphere under
high pressures at high temperatures. There have been
many attempts to overcome this limitation.[112–120]
Recent studies have shown that SPD processing is the
way to achieve that, as such an activation process is
no longer required when the TiFe is pre-processed by
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Figure 12. Long time characteristics of hydrogen storage (absorption) measured in the ECAP-processed ZK 60 alloy (from [105]).

Figure 13. Hydrogen absorption of ZK60 after HPT process-
ing at room temperature after different numbers of cycles of
hydrogen loading and unloading, according to [108].

Figure 14. Hydrogen absorption of MgH2 after cold rolling at
room temperature after different numbers of cycles of hydrogen
loading and unloading, according to [108].

HPT (Figure 15).[121] Furthermore, the HPT-processed
sample is not deactivated even after storage in air for a
prolonged period of time.[122] The mechanism enabling
hydride formation without activation is associated with

enhanced diffusion of hydrogen that occurs via HPT-
induced microcracks and nanograin boundaries. A fur-
ther study on TiFe also showed that plastic straining is
important in these hard intermetallics. Another SPD pro-
cess, specifically groove rolling of encapsulated billets,
was shown to be effective in activating TiFe samples as
well.[123]

4.4. Production of Nanograins in Semiconductors
and Occurrence of Photoluminescence. When crys-
talline Si is subjected to high pressure, allotropic trans-
formations occur from the diamond cubic structure (Si-I)
to high-pressure phases with different crystal structures.
These include Si-II with the β-Sn structure, Si-III with
body-centered cubic structure, and other phases.[124]
Because such high-pressure phases are semi-metallic
in nature, they are more likely to deform plastically
at room temperature under high pressure. An early
study [125] and more recent studies [126,127] reported
the formation of nanograins in crystalline Si processed
by HPT. The mechanism for the nanograin formation
is not understood but it is probably associated with
enhanced dislocation activity or transformation-induced
grain refinement.[2,128,129] It is interesting to note that
nanocrystalline Si (nc-Si) exhibits unique optical prop-
erties such as visible photoluminescence (PL) because
of quantum confinement.[130] It was shown that anneal-
ing after HPT gave rise to a reverse transformation
of Si-III and Si-XII to Si-I while retaining the nano-
grained structure (Figure 16).[127] This is reflected
in a broad PL peak centered around 600 nm due to
the quantum confinement effect in the Si-I nanograins
(Figure 17).[127] The application of HPT to Ge and
GaAs also produced nanograins [131,132] and a simi-
lar PL peak was also observed for GaAs owing to the
nanograin formation by HPT processing and subsequent
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(a) (b)

Figure 15. Pressure–concentration (P–C) isotherms at 303 K for samples processed by (a) annealing at 1,273 K for 24 h and (b)
HPT processing for 10 turns. Fourth cycle in (b) was terminated after absorption for conducting XRD analysis.[121]

Figure 16. Raman spectra after HPT processing for 20 rev-
olutions and annealing. Each Raman spectrum was taken at
about 2 mm from the disk center.[127]

annealing.[132] It should be noted that nc-Si is com-
monly produced by ion implantation,[133] electrochem-
ical etching,[134] and chemical vapor deposition,[135]
all of which are suitable for low-dimensional nanostruc-
tures such as porous Si and Si dots. It is important to
emphasize that the nano-grained semiconductors were
obtained in bulk form by virtue of HPT. Thus, the HPT
processing of semiconductors can be of great interest for
potential applications to optoelectronic devices.

4.5. Superconductors in Nanograin Structures.
Superconducting properties such as the critical tempera-
ture Tc, critical current density J c, and upper critical field
H c2 may be affected when the sample size is reduced
to the superconducting coherence length (ξ ) due to
the quantum-confinement effect.[136–138] Although the
size effect on the superconducting transition was studied

Figure 17. PL spectra after HPT processing for 20 revolu-
tions and annealing. Some of the sharp luminescence peaks are
due to laser plasma lines.[127]

by fabricating an ultrathin lead film [139] and an alu-
minum nanowire,[140] a recent report [141] examined
the effect of grain size on the superconducting proper-
ties of bulk polycrystalline Nb whose grain size was
reduced to ∼ 250 nm using HPT processing.[142] This
grain size is equivalent to ∼ 5ξ and the effect was appre-
ciable. It was shown that the values of Tc, J c, and H c2
were increased due to grain refinement by HPT process-
ing (Figure 18). The increase in J c can be attributed to
the enhanced vortex pinning due to crystal lattice defects
such as dislocations and grain boundaries. It was also
shown that the residual resistivity ρ0 is governed by the
amount of strain imposed by the HPT processing.

Superconductivity was also studied for a well-
known system used for superconducting magnets, a Nb-
47wt%Ti alloy, to examine the effect of HPT processing
on Tc.[143] It was found that Tc occurred below 9 K,
it decreased with increasing shear strain but rose again
with annealing. Although the grain size of the mate-
rial was comparable with the coherence length (about
8ξ ),[144] the trend of Tc with the imposed strain was
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Figure 18. Temperature dependence of the magnetization
M (T) of Nb in the magnetic field H = 2 Oe. (a) As-re-
ceived sample; (b)–(e) HPT-processed samples with different
revolution numbers N.[141]

opposite to pure Nb [141] and this was attributed to dis-
solution of Ti in Nb with straining by HPT. The increase
in Tc upon annealing was due to Ti decomposition from a
supersaturated state after HPT processing. An important
conclusion is that the application of the HPT processing
to the Nb-47wt%Ti alloy in conjunction with subsequent
annealing leads to an increase in tensile strength as well
as bending strength while also maintaining Tc above the
value obtained after solution treatment (Figure 19).

4.6. Thermoelectrics. In the field of thermoelectrics,
so far mainly two groups of materials were considered in
the context of SPD processing (for a detailed review, see
[145]): (i) Bi–Te alloys for low-temperature applications
and (ii) skutterudites for high-temperature applications.
The successes of SPD processing can be judged upon
the efficiency of processed thermoelectrics in terms of
the so-called figure-of-merit:

ZT = S2T
ρλ

. (4)

A large ZT-value is reached either via a high ther-
movoltage represented by the Seebeck coefficient S or
by a decrease in electrical resistivity ρ as well as a
decrease in the thermal conductivity λ. The S-value can
be enhanced by increasing the gradient of the density
of states, for example, by limiting the sample dimen-
sions to a few nanometers or even to the atomic scale
as in topological semiconductors, like graphene or sili-
con [146]). As such dimensions are usually not reached
in SPD processing, efforts so far have concentrated on

(a)

(b)

Figure 19. Variation of (a) transition temperature for super-
conductivity, Tc, and (b) Vickers microhardness, UTS, and
bending strength against annealing time for samples processed
by HPT for N = 50 turns and annealed at 573 K.[143]

the decrease of ρ and λ. Now the problem arises of con-
trolling these two quantities independently. This problem
needs to be tackled individually for the two groups of
materials considered.

The low-temperature thermoelectric Bi–Te alloys
exhibit a large crystal anisotropy which means that the
texture of the SPD-processed materials is even more
important for the resultant ZT value than the decrease
in grain size leading to a smaller thermal conductiv-
ity through additional phonon scattering. There have
been several attempts to increase ZT by application of
SPD, mainly HPT [147] and ECAP.[148] HPT process-
ing gave rise to an increased power factor S2/ρ due to
a (110) texture contributing to both a low resistivity
and a high Seebeck coefficient (Figure 20,[147]). A real
increase in ZT by an SPD method was achieved by the
ECAP procedure [148] by carefully choosing the ECAP
temperature (773 K) and path (Route A where there is a
rotation of the billet by 180° after each pass) in order to
obtain high carrier mobility (Figure 21), thus minimizing
the electrical resistivity and thereby achieving a figure of
merit as high as ZT = 2.3.

From among high-temperature thermoelectrics, so
far skutterudites have been the subject of SPD process-
ing. Ball-milled skutterudite nanopowder was success-
fully consolidated by means of HPT at a distinctly lower
temperature than the conventional hot pressing, thus
yielding much smaller grain sizes.[149] It was found
that the thermal conductivity was strongly decreased by
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Figure 20. Electrical conductivity (a) and Seebeck coefficient
(b) vs. temperature, for p-type Bi0.5Sb1.5Te3.0 after processing
by the Vertical Bridgman Method and HPT.[147]

Figure 21. Dependence of carrier mobility µ on preferred ori-
entation angle P0.2, after applying different numbers of passes
of Route A ECAP (labeled ‘ECAE’ in the original figure (from
[148]).

HPT-induced lattice defects although cracks and voids
were also generated and increased the electrical resistiv-
ity far more so that the overall ZT dropped. This problem
was addressed by suitably increasing the HPT process-
ing temperature in order to avoid the formation of cracks
and voids, thus keeping the increase in resistivity suffi-
ciently low to achieve an overall increase in ZT (Figure
22).[145,150] By optimizing the HPT-processing tem-
perature, pressure, and strain, ZT was further increased
by a factor of 2–3 ([145,150]; Figure 22) compared with
the value before HPT. Finally, with ZT = 1.9, a world
record for n-type skutterudites was set using this strategy

Figure 22. Increase in ZT in an n-type skutterudite after HPT
processing at temperatures 400°C and 500°C. Letters A, B, and
C refer to different strains achieved by HPT (from [145]).

([151]; Figure 23). Most recently, another world record
ZT = 1.45 was also established for p-type skutterudites
[152] by means of a similar preparation procedure. It
should be mentioned that this procedure does not intro-
duce new phases,[153] unlike in many alloys processed
by SPD,[154] and instead there are changes only in
the density and arrangement of SPD-induced crystal lat-
tice defects.[153] Among the latter, there clearly were
some which increased the electrical resistivity but with-
out decreasing the lattice thermal conductivity. It must be
left to further research whether, in the interest of maxi-
mizing ZT, it is possible to remove such defects without
losing those that significantly reduce λ.

4.7. SPD-processed Materials in Biomedical Applica-
tions. One application where SPD technologies have
achieved one of their most significant successes is the
area of medical implant materials. The contemporary
development of metallic implant materials is driven
by the need for improved mechanical performance and
biocompatibility. Different paradigms govern this devel-
opment for permanent and temporary (bioresorbable)
implants. While materials for permanent implants, such
as bone or tooth replacement, obviously need to be
as inert as possible, those for temporary implants are
required to degrade at a rate commensurate with the rate
of tissue healing. Various materials are being explored as
candidates for such applications with an aim to improve
their properties by SPD processing.[155] The archetypal
alloy systems that offer the best performance for these
two kinds of applications are arguably those based on
titanium and magnesium. Indeed, Ti forms a protective
surface layer of titania and is considered to be bio-inert
(thus being suitable for permanent implants) whilst Mg
is very reactive and biodegradable.
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(a)

(b)

Figure 23. (a) Increase in ZT to a world record ZT = 1.9 by
HPT processing; the increase is mainly due to the decrease in
thermal lattice conductivity λph shown in (b) [151]

For titanium-based alloys, among which Ti-6Al-4V
is currently most used, a great challenge is the real or
perceived toxicity of the alloying elements. Commercial
purity titanium grades are thus becoming the materi-
als of choice. To compensate for the loss of strength
associated with alloying, SPD techniques are employed,
such as ECAP and, recently, its continuous modifica-
tion ECAP-Conform.[66,155–158] In this way, extreme
grain refinement, almost down to the nano scale, is
attained, and this leads to an enhancement of tensile
strength of pure titanium to the levels of the conven-
tional alloy Ti-6Al-4V and higher with UTS > 1,300
MPa.[66,156,158] Similar encouraging results were
obtained for the fatigue strength and this makes it possi-
ble to improve the design of medical implants with bet-
ter functionality (Figure 24).[156,158] Recent reviews
compile the results obtained by ECAP, as well as by
more involved SPD processing routes.[66,155] It is
especially encouraging that biocompatibility of Ti does
not suffer from the ultrafine crystallinity.[159] On the
contrary, enhanced rates of attachment and prolifera-
tion of osteoblast and fibroblast cells, as well as stem

Figure 24. 3.5 mm diameter Timplant
®

(above) and the new
2.4 mm diameter Nanoimplant

®
produced from superstrong

n-Ti (below).[156,158]

cells,[156,157,160] were obtained in a number of in
vitro assays. In vivo studies, while not confirming such
enhancement, demonstrated that a spectacular improve-
ment of the mechanical performance of ECAP-modified
commercial purity Ti was not accompanied by a loss of
biocompatibility.[161]

To further improve biocompatibility, it has been
attempted (i) to replace Al and especially V with more
biocompatible elements and (ii) to make Young’s mod-
ulus close to that of bone in order to avoid the so-called
‘stress shielding’.[162] In particular, Ti–Nb alloys have
attracted a great deal of interest. Not only do they meet
both these requirements, but they also show good biocor-
rosion properties.[162] However, since a low Young’s
modulus is inherently connected with a relatively low
strength, some additional strengthening is required if this
material is to be used for medical applications as in
implants or prostheses. Processing by SPD can improve
the strength via grain refinement.[163–168] However,
due to the potential of SPD processing to change phase
stability as a result of shear combined with hydrostatic
pressure, additional phases may form and this may pro-
duce undesired changes—mostly increases—of the over-
all Young’s modulus (see, e.g.[166]) except when a new
phase has a low Young’s modulus too.[167] Also, SPD
processing of ternary and quaternary alloys obtained by
replacing some of the Nb content by other constituents
such as Ta, Zr, and Sn may affect the Young’s modu-
lus in a similar way. Nevertheless, if care is taken in
choosing the SPD parameters, such as limited pressure
and strain, as well as the number and type of alloy con-
stituents, the strength may be increased by 30–120%
(Figures 25 and 26,[157,168]). The selection of an SPD
method is also important if a good ductility is required
for the intended application. Hydro-Extrusion (HE) may
be the SPD method of choice, thereby sacrificing some
strength for higher ductility. It is important to empha-
size that with all different SPD methods applied to date
(Rolling and Folding (R & F), HE, and HPT [168]),

12



Mater. Res. Lett., 2016

Figure 25. Stress–strain curves for initial and SPD-processed
Ti-45Nb samples. HE-5 stands for 97% area reduction by HE,
HPT-4-X for High-Pressure Torsion at a pressure of 4 GPa and
X revolutions.[168]

a low Young’s modulus was maintained (Figure 26).
Smaller changes may happen according to the texture
evolution which, again, is specific to the particular SPD
method chosen ([168]; Figure 26). While with HPT pro-
cessing the evolving texture is weak, this is not so for the
R & F technique, the Young’s modulus becoming even
lower than initially, so that the elastic behavior of the
material is closer to that of bone.

Magnesium is very promising for medical applica-
tions because of its light weight and bioresorbability.
[169,170] As the lightest of all structural metals (except
beryllium), the use of magnesium can reduce the
weight of many medical structures from wheelchairs and
stretchers to surgical tools, to vascular stents and ortho-
pedic implants.[171,172] Magnesium is also among the
most biocompatible of metals.

The prospect of nanostructuring magnesium and
its alloys to achieve novel properties was recognized
more than 20 years ago.[2,173,174] Grain refinement has
been regarded as one of the most attractive methods to
enhance the performance of magnesium alloys.[175] In
addition to grain refinement, substantial texture effects
are induced in hcp magnesium alloys by SPD processing.
The latter are sometimes sufficiently large to introduce
significant mechanical anisotropy, and they are large
enough in magnitude to cause net softening upon ECAP
[176,177] which is to be avoided through appropriate
process design.

Nanostructuring of magnesium alloys offers several
advantages and alternatives for biomedical applications,
for example in vascular stents. First, reducing the grain
size alters the corrosion rate. An AZ31 alloy was pro-
cessed by ECAP and it was found that the corrosion
rate in Hank’s solution was reduced, although not suf-
ficiently to make it suitable for stent applications.[178]
An AZ80 alloy was deformed by ECAP and extrusion to

(a)

(b)

Figure 26. Young’s modulus E as measured by nanoindenta-
tion (open circles), and microhardness H (open triangles), as a
function of von Mises equivalent strain ε, for R & F (a) and
HPT samples (b). The values of E were also calculated from
texture data (full squares).[168]

obtain an UFG structure that enhanced the electrochem-
ical properties.[179] The polarization layers produced
remained stable and completely resisted degradation for
up to 96 h. More recently, the electrochemical character-
istics of AE21 and AE42 alloys were evaluated after pro-
cessing by ECAP for eight passes.[180] It was found that
the smaller grain size resulting from ECAP enhanced
the corrosion rate in AE21 due to increased chemical
activity at the grain boundaries whereas, by contrast,
the corrosion rate in AE42 was reduced after the same
ECAP treatment. In the latter case, the larger effect of
increased uniformity of the spatial distribution of alloy-
ing elements offsets the effect of a smaller grain size.
Clearly, the effects of nanostructuring are complex and
alloy dependent and accordingly they must be carefully
evaluated for any prospective magnesium alloy.

In particular, osteoconductive characteristics of
nanostructured surfaces need further exploration. The
in vivo characteristics of both conventional and nanos-
tructured magnesium alloys need to be researched to
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Figure 27. Microhardness of samples of Mg0.2Zn0.5Ca as a
function of homologous annealing temperature T/Tm (T and
Tm denoting the annealing temperature and the melting tem-
perature in Kelvin, respectively): (i) after 1 h annealing (full
circles) and (ii) after HPT processing and annealing (squares
and triangles). HPT processing was done at a pressure of 4 GPa
up to von Mises equivalent strains ε indicated.[183]

establish the basis for realizing the high potential of
magnesium-based stents and orthopedic devices.

As noted earlier, the ability of Mg to be resorbed in
bodily fluids makes it a good candidate for biodegrad-
able implants. Various Mg alloys have been tested with
respect to their biodegradability. Mg–Zn–Ca alloys have
proven to exhibit two advantages at the same time, a
good biodegradability and high strength.[181] However,
recent experiments with these alloys show that, with
respect to the time necessary for tissue healing, these
alloys may either degrade too quickly and/or the con-
comitant hydrogen evolution is faster than the organism
can absorb. It was found that the lower the alloying
element and/or impurity content of the Mg-alloy, the
longer it takes for the alloy to degrade.[182] On the
other hand, this means that the potential of the alloy
for high strength becomes smaller because second-phase
particles cannot form and also solid-solution harden-
ing becomes insignificant. It also becomes harder to
reduce the grain size of the Mg alloy below 1 μm with
the presence of fewer second-phase particles and/or
atoms in solid solution. Very recently, it was reported
that strengthening of Mg and its dilute alloys can be
affected by the agglomeration of surplus vacancies in
vacancy clusters or loops.[183] Figure 27 presents this
strengthening effect for the case of biodegradable alloy
Mg0.2Zn0.5Ca, which was HPT processed to generate
vacancies [184,185] and annealed at homologous tem-
peratures up to about 0.5 Tm (where Tm is the melting
temperature in Kelvin) in order to induce agglomeration
of these vacancies. Depending on the HPT strain applied,
the strength increment amounted to almost 60% of the
strength of the as-extruded material (Figure 27). By
comparison, grain size strengthening yielded a strength

increment of only 19% and this is irrespective of the
HPT strain applied (Figure 27;[183]). The hypothesis
that vacancies are responsible for the observed strength-
ening effect is supported by two facts, namely that (i)
very similar hardening effects with respect to extent and
annealing treatment have been reported for quenched-in
vacancies [186] and (ii) careful checks by Atom Probe
Tomography [183] ruled out the formation of a second
phase as an alternative cause for strengthening.

5. Summary The results of numerous studies
reported in this article demonstrate clearly that vari-
ous superior properties, both mechanical and functional,
can be obtained in bulk nanostructured materials pro-
duced by SPD. The results of numerous studies reported
in this article demonstrate clearly that various supe-
rior properties, both mechanical and functional, can be
obtained in bulk nanostructured materials by SPD. The
basic mechanical properties considered include superior
strength, enhanced fatigue endurance, and superplas-
ticity. These studies generate a great deal of interest
with regard to scientific foundations of the phenomena
involved and their practical applications in new struc-
tural materials. Recent discoveries have also demon-
strated new opportunities for SPD processing with
respect to improving functional properties of materials.
These include increased electrical conductivity in metals
and alloys, giant magnetoresistance, enhanced hydrogen
storage performance, occurrence of photoluminescence
in nanograined semiconductors, superior thermoelectric
properties, and many other unique phenomena that are of
immediate interest for various functional applications.

Observations performed during the last decade with
a suite of modern techniques including TEM/HREM,
X-ray diffraction, 3D-atom probe, and others reveal
that not only can SPD processing form UFGs but it
can also be used to engineer grain boundary structure
and generate nanoparticles, segregations or nanoclusters
and other structural elements at nano scale. The type and
morphology of such nanostructured elements, as well as
their number density, determine new deformation and
transport mechanisms responsible for improvement of
mechanical, chemical and physical properties of bulk
nanostructured materials through SPD techniques.

Over the last few years, studies of bulk nanostruc-
tured materials tend to be oriented more toward the
development of their advanced and superior properties
and in this context the concept of nanostructural design
plays an important role. In addition to grain refinement
down to the nanometer range, grain boundary structure
engineering is also important because boundaries having
different structures can exhibit specific transport mech-
anisms, in terms of deformation and diffusion, and this
can be used to control the properties.[7,187] This opens
up the potential for developing new ways for improving
the properties of ultrafine-grained materials.
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Figure 28. Principles of nanostructural design of bulk nanostructured materials.[5]

The concept of the nanostructural design of mate-
rials is schematically illustrated in Figure 28 [5] using
a pictorial representation which modifies and further
develops the well-known concept of the contempo-
rary creation of novel materials through the integra-
tion of theory and modeling, structure characteriza-
tion, processing and synthesis, as well as studies of
the properties. In comparison with traditional materi-
als design, nanostructuring of bulk materials deals with
a far larger number of structural parameters related to
the grain size and shape, lattice defects in the grain
interior, as well as with rich grain boundary struc-
ture, and also with the presence of segregations and
second-phase nanoparticles. This provides the possibil-
ity to vary the transport mechanisms and change the
properties of materials in a desired way. Not only does
nanostructuring of bulk materials by SPD processing
permits a considerable enhancement of mechanical and
physical properties, but it may also be used to create mul-
tifunctional materials.[4,8,9,31,188,189] In this respect,
it can be anticipated that in the very near future the
nanostructuring of materials by SPD processing tech-
niques under different controlled regimes will provide
new breakthroughs in the development of materials with
superior properties for advanced structural and func-
tional applications.
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