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ABSTRACT
Here we present a perspective on heterogeneous materials, a new class of materials possessing
superior combinations of strength and ductility that are not accessible to their homogeneous
counterparts. Heterogeneous materials consist of domains with dramatic strength differences. The
domain sizesmay vary in the rangeofmicrometers tomillimeters. Large strain gradients near domain
interfaces are produced during deformation, which produces a significant back-stress to strengthen
the material and to produce high back-stress work hardening for good ductility. High interface den-
sity is required tomaximize the back-stress, which is a new strengtheningmechanism for improving
mechanical properties.
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Heterogeneous materials are becoming the next hot research field after the nanomaterials era.
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Background

Materials are either strong or ductile, but rarely both at
the same time [1,2]. Stronger and tougher materials are
desired for many structural applications such as trans-
portation vehicles for higher energy efficiency and bet-
ter performance. For the last three decades, nanostruc-
tured (ultrafine-grained) metals have been extensively
studied because of their high strength. However, over-
coming their low ductility has been a challenge [2–25],
which is one of the major reasons why they have not
been widely commercialized for industrial applications.
Another major obstacle to practical structural applica-
tions of nanostructured metals is the challenge in scaling
up for industrial production at low cost [26].
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After over a century’s research, we have almost
reached the limit on how much further we can improve
the mechanical properties of metals and alloys. Our con-
ventional wisdom from the textbook and literature is to
reinforce a weakmatrix by a stronger reinforcement such
as second-phase particles or fibers. A question arises on
if there exist yet-to-be-explored new strategies to make
the next generation of metals and alloys with a ‘quantum
jump’ in strength and ductility instead of the incremen-
tal improvements that we have seen for the last several
decades.

Recently, there have been several reports on supe-
rior combinations of strength and ductility in various
metals and alloys that are processed to have widely dif-
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ferent microstructures, including the gradient structure
[27–32], heterogeneous lamella structure [33], bimodal
structure [10,25,34,35], harmonic structure [36–38],
laminate structure [39,40], dual-phase steel [41–43], nan-
odomained structure [44], nanotwinned grains [45,46],
etc. [47]. These materials have one common feature:
there is a dramatic difference in strength between dif-
ferent domains, while the sizes and geometry of the
domains may vary widely. In other words, there are
huge microstructural heterogeneities in these materials.
Therefore, these materials can be considered as hetero-
geneous materials.

In this perspective, we will present the fundamen-
tal physics that renders these heterogeneous materials
superiormechanical properties as well as themicrostruc-
tures that are required for producing the best mechanical
properties.

Definition of heterogeneousmaterials

Heterogeneousmaterials can be defined asmaterials with
dramatic heterogeneity in strength fromone domain area
to another. This strength heterogeneity can be caused
by microstructural heterogeneity, crystal structure het-
erogeneity or compositional heterogeneity. The domain
sizes could be in the range of micrometers to millimeters,
and the domain geometry can vary to form very diverse
material systems.

Deformation behavior of heterogeneous
materials

During deformation, for example, tensile testing, of the
heterogeneous materials, with increasing applied strain,
the deformation process can be classified into three stages

Figure 1. The three deformation stages of heterogeneous mate-
rials (the red stress–strain curve).

(see Figure 1). In stage I, both soft and hard domains
deform elastically, which is similar to a conventional
homogeneous material.

In stage II, the soft domains will start dislocation slip
first to produce plastic strain, while the hard domains will
remain elastic, which creates a mechanical incompatibil-
ity. The soft domains need to deform together with the
neighboring hard domains and, therefore, cannot plas-
tically deform freely. The strain at the domain interface
needs to be continuous, although the softer domains will
typically accommodate more strains since they are plas-
tically deforming. Therefore, there will be a plastic strain
gradient in the soft domain near the domain interface.
This strain gradient needs to be accommodated by geo-
metrically necessary dislocations, which will make the
softer phase appear stronger [33,48], leading to syner-
getic strengthening to increase the global measured yield
strength of the material [29].

In an extreme/ideal case, the soft domains are com-
pletely surrounded by the hard domainmatrix so that the
soft domain cannot change its shape as required by plas-
tic deformation until the hard domain matrix starts to
deform plastically. Geometrically necessary dislocations
will pile-up at the domain boundaries in the soft domain,
but cannot transmit across the domain boundary, build-
ing up high back-stress (see Figure 2). This can make the
soft domain almost as strong as the hard domain matrix,
making the global yield strength much higher than what
is predicted by the rule of mixture [33].

In stage III, both the soft and hard domains deform
plastically, but the soft domains sustain much higher
strain than the hard domains, producing the so-
called strain partitioning [43,49–53]. When neighboring
domains sustain different plastic strains, strain gradients
are expected to exist near the domain boundaries in both

Figure 2. A 4-μm soft grain surrounded by a hard ultrafine-
grained matrix in heterogeneous lamella Ti. Dislocation pile-ups
are marked by green lines.
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the soft and hard domains. These strain gradients will
become larger with increasing strain partitioning, and
consequently produce back-stress work hardening. The
back-stress work hardening will help with preventing
necking during tensile testing, thus improving ductil-
ity. This is the primary reason why dual-phase steel has
extraordinary work hardening, and consequently high
ductility [43,49,51,53].

Back-stress strengthening and back-stress work
hardening

As discussed above, back-stress plays a significant role in
the reported extraordinary strength and ductility of het-
erogeneous metals. Two types of dislocations are usually
involved in the plastic deformation of metals and alloys:
statistically stored dislocations and geometrically neces-
sary dislocations. The flow stress as a function of disloca-
tion density is conventionally calculated as [54–56]

τ = αGb
√

ρS + ρG, (1)

where τ is the shear flow stress, α is a constant, G is the
shear modulus, b is the magnitude of Burgers vector, and
ρS and ρG are the densities of statistically stored dislo-
cations and geometrically necessary dislocations, respec-
tively. In this equation, the statistically stored disloca-
tions and geometrically necessary dislocations are treated
to have the same contribution to the flow stress. Obvi-
ously, the back-stress caused by geometrically necessary
dislocations area is ignored.

For conventional homogeneous metals, Equation (1)
has been used to reasonably explain their mechanical
behaviors, because the back-stress caused by the geomet-
rically necessary dislocations is relatively small. However,
for heterogeneous materials, the back-stress can bemuch
higher than the strengthening associated with the statis-
tically stored dislocations [33,48], and therefore has to
be considered. As discussed later, the back-stress can be
utilized to design heterogeneous materials with unprece-
dented mechanical properties.

What is the physical origin of back-stress? To answer
this question, let us have a look at the piling-up
of geometric dislocations as schematically shown in
Figure 3(A). Assume that there is a dislocation source
at point X, which emits geometrically necessary disloca-
tions with the same Burgers vector toward the domain
boundary on a slip plane. Under an applied shear stress
τ a, there are seven dislocations piled up and the sys-
tem reached equilibrium. These dislocations collectively
produce a long-range stress, τ b, toward the dislocation
source as indicated by the arrow, which counterbalances
the applied stress. The effective stress at the dislocation
source can be expressed as τ e = τ a − τ b. If the critical

Figure 3. (A) Schematics of the piling-up of geometrically neces-
sary dislocations. (B) Plastic strain and strain gradient as a function
of distance from the domain interface. (C) The effective stress
(= applied stress− back-stress) as a function of distance from
the domain interface.

stress to operate the dislocation source is τ c, then τ e has
to be higher than τ c for the dislocation source to emit
more dislocations. In other words, higher applied stress
is needed for more dislocations to be piled up. Therefore,
back-stress is a long-range stress created by geometrically
necessary dislocations. The above discussion describes
how back-stress can be produced from an individual dis-
location pile. The experimentallymeasured back-stress is
the global collective back-stress in the whole sample, just
like themeasured yield stress is a global stress contributed
by individual yielding events in the whole sample.

Back-stress is connected with plastic strain gradient.
The plastic strain is produced by the slip of dislocations,
with each dislocation leaving a displacement of one Burg-
ers vector in its wake. Therefore, in Figure 3(A) the strain
is zero at the domain interface (pile-up head), and the
strain is increased to seven Burges vector at the dislo-
cation source. The black curve in Figure 3(B) shows a
smoothed strain curve as a function of distance from
the interface, the other curve in Figure 3(B) is the cor-
responding strain gradient curve. Therefore, the pile-up
of geometrically necessary dislocations produces strain
gradient as well as stress gradient (Figure 3(C)). In other
words, if strain gradient is observed, there will exist the
pile-up of geometrically necessary dislocations and cor-
responding back-stress.

Note that another scenario to produce an array of
geometrically necessary dislocations and the associated
back-stress is when dislocations are emitted from a ledge
on the domain boundary and/or grain boundary, but they
form an array on a slip plane near the boundary [57]. This
will produce the same back-stress to counterbalance the
stress at the dislocation source, although the strain gradi-
entwill be different fromwhat is described in Figure 3(B).



530 X. WU AND Y. ZHU

The highest plastic strain always occurs at the dislocation
source.

Back-stress has the same physical origin as the
Bauschinger effect [58]. The larger Bauschinger effect
corresponds to the higher back-stress. However, back-
stress can be used to improve the strength and ductility
of metals if appropriate heterogeneous structures can be
designed, instead of just a phenomenon of mechanical
behavior as the Bauschinger effect is often regarded. The
back-stress and its evolution during a tensile test can be
measured experimentally [33,48].

Microstructural requirement for the optimum
mechanical properties

After discussing the role of back-stress in the mechanical
behavior and the physical origin of back-stress, it natu-
rally follows that we can design heterogeneous structures
to maximize back-stress for the best mechanical proper-
ties. Since back-stress is produced by dislocation pile-up
at domain boundaries, we should design the heteroge-
neous structure with high density of domain interfaces.
However, the spacing between the domain interfaces
should be large enough to allow an effective dislocation
pile-up in at least the soft domains and ideally in both
soft and hard domains. Another design factor is to maxi-
mize strain partitioning among heterogeneous domains,
which will consequently increase the strain gradient,
which will consequently increase back-stress work hard-
ening. This means that the strength between the domains
should be large, and the domain geometries should be
such that large strain partitioning can be easily realized.

With the above two criteria for high back-stress,
we can make comments on the effectiveness of vari-
ous heterogeneous structures. For the gradient structure
[27–32], there will be two dynamically migrating inter-
faces during the tensile tests [28,29], which allows dis-
location density accumulation over the whole sample
volume. However, the low interface density also limits its
capability of back-stress work hardening. For a bimodal
structure [10,25,34,35], the interface density is usually
not maximized, which did not make the full use of the
back-stress hardening potential. For a laminate struc-
ture [39,40], the soft and hard laminates are subjected
to the same applied strain, which limits their strain por-
tioning capability and consequently back-stress develop-
ment. For dual-phase steel [41–43], the hard martensitic
domains typically account for 5–30% by volume and are
embedded in the soft matrix. Although this allows signif-
icant strain portioning to increase the back-stress work
hardening and consequently high ductility, the continu-
ous soft matrix also allows the material to yield at low
stress, which is why dual-phase materials typically have

Figure 4. Schematics of lamella structure with elongated soft
coarse-grained domains embedded in an ultrafine-grained
matrix.

very high ductility, but limited enhancement in strength.
For a harmonic structure [36–38], the soft domains are
totally surrounded by hard domain layers similar to a
cellular structure. It has been observed to enhance the
ductility, but the strength improvement is so far lim-
ited, which could be improved by reducing the domain
interface spacing and hard domain volume fraction to
further constrain the soft domains. For the heteroge-
neous lamella structure [33], the soft lamella domains
with a volume fraction of <30% are embedded in a hard
matrix (Figure 4), which renders it high strength because
the rigid constraint by the hard matrix makes the soft
domains almost as strong as the hard matrix during the
deformation stage II (see Figure 1). The strong strain
partitioning during deformation stage III also renders
unprecedented high strain hardening, which increases
its ductility. Therefore, the heterogeneous lamella struc-
ture [33] presents a near-ideal heterogeneous structure.
This explains why the heterogeneous lamella structure
has shown the most dramatic improvement in strength
and ductility among all reported types of heterogeneous
materials.

Future perspective

Heterogeneous materials is a fast emerging field that is to
become a hot research field in the post-nanostructured
materials era. There is a huge research community in the
area of nanostructured materials, which has been exten-
sively studied for over three decades. The maturing of
this field and the challenge to the practical applications
of nanostructured materials have made it hard to secure
research funding in many countries in the world. Het-
erogeneous materials have many similarities to nanos-
tructured materials because the hard domains could be
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nanostructured/ultrafine grained,whichmakes it easy for
researchers in the nanostructured materials community
to transit to the heterogeneous materials field. In addi-
tion, several types of heterogeneousmaterials can be pro-
duced by the current industrial processing technology so
that their practical applications have a very low barrier.

There are many scientific and engineering issues that
need to be addressed by both experimentalists and mod-
elers from the communities of both materials science
andmechanics. The heterogeneousmaterials community
is quickly growing, with more international conferences
and workshops being organized, for example, the bian-
nual the minerals, metals &materials society symposium
on heterogeneous and gradient materials. Sessions on
heterogeneous materials are also inserted into conven-
tional successful symposia such as the TMS biannual
meeting on ultrafine-grained materials. These activities
help with the fast development in the area of heteroge-
neous materials.
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