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Severe cold rolling followed by recrystallization has been widely used to produce heterostructures for superior
strength-ductility combinations in metallic materials. However, this requires a thick feeding stock and has high
processing cost due to severe rolling strain. Here we report that only moderate rolling is needed to produce an
effective heterostructure for high yield strength and good ductility in FeCrNi medium entropy alloys (MEA).
Moderate rolling plus partial recrystallization produces a unique heterostructure, in which the recrystallized

zones is harder than the unrecrystallized zones. This is formed by a mechanism that is very different from what is
reported for severely cold-rolled metals. The strategy developed here has notable advantages in terms of high
efficiency, low cost, and superior mechanical properties, rendering it applicable for a wide range of alloy

systems.

Heterostructured (HS) materials, characterized by distinct constitu-
ent zones at appropriate length scales, has emerged as a novel micro-
structure strategy for designing metals and alloys with attractive
combination of strength and ductility [1-9]. At the heart of HS strategy
is the interactive coupling between hard and soft zones with dissimilar
mechanical properties to generate local but substantial strain gradients
accommodated by geometrically necessary dislocations (GNDs) during
deformation [1,10]. Such interaction between HS zones leverages the
hetero-deformation induced (HDI) strengthening and work hardening,
whose potential is rather low in conventional homogeneous micro-
structure [1,11]. Consequently, if not intrinsically brittle, HS materials
often outperform their homogeneous counterparts in strength-ductility
combinations [12-14].

One of the primary methodologies to process HS materials is to
combine severe cold rolling with a total reduction of usually above 85 %
and appropriate subsequent heat treatment [15]. For example, a heter-
ostructured CoCrFeMnNi high entropy alloys was processed by severe
cold rolling (reduction ratio ~ 96.7 %) plus partial recrystallization,
which produced a high yield strength of 827 MPa while retaining a good
ductility of 12.9 % [16]. The underlying principle is to impart high
defect densities through severe rolling deformation, which suffices the
thermodynamic driving force for partial or non-uniform recrystalliza-
tion in subsequent annealing. As a result, the unrecrystallized regions
with small grain sizes serve as the hard zones whereas the recrystallized
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regions as the soft zones. The strength and flow behavior of such
as-processed hard and soft zones can be different by a large margin,
thereby promoting the HDI effect to enhance the overall mechanical
properties of the materials [17].

The convention of severe cold rolling to fabricate HS materials at
research laboratories is a natural continuation of the decades-long
research in severe plastic deformation to produce ultrafine-grained
materials [18,19]. Ultrafine grains are usually the desired hard zones
in the HS materials processed by cold deformation and subsequent
annealing. However, the severe-rolling-based approach could be
equipment demanding and energy consuming, thus presents a low
cost-effectiveness for commercial scale production. It is thus worthwhile
to explore processing routes that is less rolling-intensive but capable of
producing effective heterostructure with equal or even better mechan-
ical performance.

From the perspective of microstructure development, recrystalliza-
tion is not necessarily the sole path to heterogeneous grain structures
using cold rolling and subsequent heat treatment. Deformation during
cold rolling itself is non-homogeneous at the early to intermediate
rolling stages, thus allowing microstructure manipulation towards HS
constituent zones when coupled with post-rolling heat treatment.
Experimental endeavors in this regime are relatively scarce but expected
to deliver more efficient and eco-friendly processing technologies for HS
materials. Moreover, there are also critical scientific questions pertinent
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to the issue. For example, if this proposed low rolling-intensive route is
viable, is there a lower limit for thickness reduction to attain hetero-
structures with decent mechanical properties and what is the underlying
microstructure physics?

In this paper, we explore the potential of moderate rolling to produce
heterostructured materials with desired strength and ductility, using an
FeCrNi medium entropy alloy (MEA) as an example. The role of thick-
ness reduction on the development of heterostructure after heat treat-
ment is carefully examined, and its impact on mechanical performance
is discussed in detail. We also investigated the lower limit for thickness
reduction, below which the as-processed material becomes intrinsically
more brittle due to the retention of much coarse grains structure. The
results suggests that a window of moderate rolling reduction is preferred
in processing to achieve heterostructures with an outstanding strength-
ductility combination. A novel type of heterostructure was developed in
this study, in which the recrystallized fine-grained zones have higher
strength than large unrecrystallized zones, contrary to the reported
heterostructures produced by severe cold rolling and annealing, in
which the recrystallized zones act as softer zones. This study advances
the understanding of processing strategies for achieving superior me-
chanical properties in HS materials.

The FeCrNi medium entropy alloy (MEA) was fabricated using the
Hot Isostatic Pressing (HIP) technique. Raw materials of Fe, Cr, and Ni
with high purity (>99.99 %) were melted in a tungsten crucible and
subsequently atomized under Ar gas at 4 MPa. The resulting powder was
compacted in a stainless steel can and subjected to degassing and so-
lidification processes at 140 MPa and 1200 °C for 2 h. Following HIP
treatment, the billet was cooled to room temperature in a furnace and
further processed into sheets of varying thicknesses (as shown in
Fig. S1). Cold rolling was performed on sheets with different initial
thickness of 2, 3, 4, and 8 mm to a final thickness of 1.2 mm, corre-
sponding to rolling reductions of 40 %, 60 %, 70 %, and 85 % (rolling
strains ¢ of 0.7, 1.5, 2.3, and 5.7). These samples were denoted as
MEA40, MEA60, MEA70, and MEAS8S5, respectively. A pilot testing of
hardness on each cold-rolled sample after a series of heat treatments
(different temperatures for 1 h) is done to determine the appropriate
heat treatment conditions (Fig. 1). All samples exhibit a nearly identical
hardness level after 700 °C annealing for 1 h, suggesting their strength
are rather similar regardless of different rolling reductions. Therefore,
this heat treatment condition enables a valid evaluation of mechanical
properties (strength-ductility combination) under the same cost of heat
treatment.

Thus, all samples were heat-treated at 700 °C for 1 h, followed by
being shaped into dog-bone specimens with a gauge length of 10 mm
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Fig. 1. Hardness variation curves of FeCrNi MEA with different rolling reduc-
tion under loading level of 3 kg.
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and a width of 3 mm. Uniaxial tensile tests were performed using a
Shimazu testing machine at a strain rate of 1 x 107 s and at room
temperature. Each sample was tested a minimum of three times to
ensure data reproducibility. Additionally, loading-unloading-reloading
(LUR) tests were conducted to measure the hetero-deformation-
induced (HDI) stress at the same strain rate. Field-emission scanning
electron microscopy (SEM) equipped with an electron back-scattered
diffraction (EBSD) detector was utilized to investigate the microstruc-
tural differences and fracture morphologies associated with varying cold
rolling reductions.

Figs. 2 and S2 show the heterostructure characteristics of moderate-
rolled samples (MEA60 and MEA70) after annealing, in contrast with the
severely rolled one (MEAS85). For moderate-rolled samples, grain
structures can be clearly classified into two zones (Fig. 2a and b) — one
embraces fine grains of a few micrometers and the other contains rela-
tively larger grains with their sizes above ten micrometers (Fig. 2d and
e).

The moderate rolling produced a novel type of heterostructure with
recovered coarse-grained regions as the soft zones, and recrystallized
fine -grained regions as the hard zones (shown in Fig. S3), which is
opposite to the heterostructure produced by severe-rolling-based route
[15,16]. This is because the formation pathway for the present hetero-
structure is distinctively different from those early reports based on
severe-rolling-based routes. According to the grain boundary charac-
teristics (Fig. 2g and h), the fine grain boundaries are primarily of high
angle, because they were produced by recrystallization of more severely
deformed regions. Instead, the large, grained zones did not come from
recrystallization. They are originated from coarse grains whose grain
refinement is incomplete upon moderate rolling. Despite some extent of
recovery during the heat treatment, the remanence of intragranular
dislocations is appreciable (Fig. 3a and b). In contrast, MEA85 sample
exhibits almost uniformly recrystallized fine grains, far from the
development of an effective heterostructure. This is because the
increased rolling reduction led to a more uniform accumulation of
plastic strain within the initial microstructure, thereby promoting the
homogenization of microstructures. Conventional wisdom of processing
to obtain heterostructure is to further prolong annealing by stimulating
abnormal grain growth.

Fig. 4a shows that both MEA60 and MEA70 exhibit comparable yield
strength to MEAS85, which is consistent with the prior hardness testing
but in contrast to their different average grain sizes. The unexpected
high tensile strength in heterostructures (MEA60 and MEA70) can be
attributed to the enhanced strain hardening [20]. Since hardness/-
strength is kept similar in the design of heat treatment, the ductility is of
interest in terms of property comparison. Notably, both heterostructured
samples demonstrate significantly enhanced fracture elongation and
uniform elongation (marked circle in Fig. 4a and b) compared to the
MEAS5 sample. Further details regarding the tensile properties of the
FeCrNi MEA can be found in Table S1. The enhanced ductility of MEA60
and MEA70 can be attributed to their significantly higher work hard-
ening rate (0), as depicted in Fig. 4c.

The enhanced strain hardening rate and ductility can be elucidated
by the hetero-deformation-induced stress during plastic deformation
[21]. The dissimilar grain sizes and intragranular dislocation densities in
different zones of MEA60 and MEA70 lead to considerable mechanical
incompatibility during deformation, inducing local strain gradient and
effective accumulation of GNDs to improve strain hardening rate. This
HDI stress and hardening is substantial compared to the homogeneous
sample (MEAS85), as evidenced by the loading-unloading-reloading
measurement in Fig. S4. It can be deduced that the initial remanence
of intragranular dislocations in heterostructured samples after annealing
does not consume much the room for subsequent dislocation storage.
Thus, the moderate-rolling induced heterostructures can leverage the
potential of HDI effect comparable to those from conventional
rolling-intensive routes.

In the rest following, we show and discuss the existence of a lower
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Fig. 2. EBSD images of FeCrNi MEA with different cold rolling reduction followed by annealing at 700 °C for 1 h. (a—c) inverse pole figures (IPF). Red, green and blue
color represents (001), (101) and (111) poles respectively. (d—f) grain size distributions maps, and (g-i) low & high angle boundaries maps of MEA60, MEA70 and

MEAB8S. Blue and red lines represent high and low angle boundaries respectively.
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Fig. 3. (a, b) Dislocation density distributions across the heterostructure-interface in MEA60 and homogenous-interface in MEA85.

limit for rolling reduction, below which the formation of effective het-
erostructure for property improvement is not successful. Fig. 5a—c pre-
sents the microstructures and tensile properties of MEA40, with MEA60
as a benchmark for property. MEA40 also exhibits heterostructure with
respective zones of recrystallized fine grains and deformed large grains,
resembling features in MEA60 except largely different zone volume
fractions. Nevertheless, MEA40 exhibits a much-limited elongation to
failure, i.e., the heterostructure formed in MEA40 is not effective in
improving the ductility.

Fundamentally, the ductility of materials is determined by two
competing factors — the strain hardening rate drops to the level of flow

stress to initiate necking instability (Considere criterion), or the flow
stress reaches the level for crack nucleation and propagation — which-
©_ g
and assuming hardening behavior can be approximated by Hollomon
equation ¢ = Ke", where ¢ and ¢ represent the true stress and strain,
respectively, obtained from tensile tests; K is a constant; and n is the
work hardening index [22]. Thus, the uniform elongation strain upon
necking failure can be estimated as n.

Fig. 5d presents the Inc-Ine curves of MEA40 and MEA60, demon-
strating a much similar working hardening index (0.122 for MEA40 and

0.126 for MEAG60). Thus, necking instability is not the governing factor

ever comes first upon loading. Considering Considere criterion
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Fig. 4. Tensile properties of FeCrNi MEA with varying cold rolling reduction. (a) Engineering stress-strain curves, (b) true stress-strain curves, and (c) work

hardening rate versus true strain curves for MEA60, MEA70, and MEA85.
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for the failure of MEA40 since its failure strain (6.2 %) is unpropor-
tionally lower than that of MEA60 (9.1 %). It can be inferred that the
crack nucleation and growth caused premature failure and diminished
ductility in MEA40. The fracture morphologies of MEA40 (Fig. 5f) reveal
extensive regions of crack propagation, indicating brittleness induced by
the inadequate crack resistance of the large-grain boundaries. In
contrast, the fracture morphologies of MEA60 (Fig. 5e) exhibit a

predominant dimple-like region, indicating superior crack resistance
and higher ductility. Therefore, below a critical rolling reduction, the
heat treatment with identical energy input is incapable of producing
effective heterostructure due to the significant retention of large grains
whose boundaries are susceptible to crack propagation.

In summary, it is demonstrated that moderate rolling can be applied
to produce a novel and effective heterostructure to improve mechanical
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properties with high efficiency and low cost. The recrystallized fine
grains formed hard zones and the deformed large grains formed soft
zones, which enabled the potential of HDI effect as effective as micro-
structures from rolling-intensive routes. Meanwhile, it is found that
rolling reduction to enable such strategy has a lower limit, below which
over-retention of large grains is undesired and drives the failure by crack
nucleation and propagation along grain boundaries. Therefore, moder-
ate rolling reduction coupled with appropriate annealing is indicated as
an effective and economical processing route for production of hetero-
structure materials for superb combination of strength and ductility.
This strategy can be widely applied to produce heterostructures through
the non-uniform accumulation of plastic strain during moderate cold
rolling, regardless of the material.
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