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We report in situ atomic-scale investigation of late-stage void evolution, including growth, coalescence and shrinkage, under
electron irradiation. With increasing irradiation dose, the total volume of voids increased linearly, while the nucleation rate of new
voids decreased slightly and the total number of voids decreased. Some voids continued to grow while others shrank to disappear,
depending on the nature of their interactions with nearby self-interstitial loops. For the first time, surface diffusion of adatoms was
observed to be largely responsible for the void coalescence and thickening. These findings provide fundamental understanding to

help with the design and modeling of irradiation-resistant materials.
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The irradiation resistance of a material determines its per-
formance and service life in many applications such as
nuclear energy, [1-5] outer space systems [6] or other
industrial applications.[7,8] Radiation produces crys-
talline and microstructural defects in materials, which
causes degradation of their properties. Extensive effort
has been taken to investigate the evolution of irradiation-
induced defects, including dislocations, stacking fault
tetrahedrons, voids, element segregation and precipita-
tion in metals and ceramics.[9—27] Particularly, void
formation has attracted extensive attention since it may
cause volumetric swelling and eventual material failure.

Voids have been reported to form in almost all crys-
talline materials under irradiation.[9—12,28-32] They are
formed from the aggregation of vacancies or vacancy
clusters in irradiated materials.[9] Voids usually take
the morphology of faceted polyhedrons, bounded with
low-energy surfaces. The growth process of voids is
found complex and dynamic,[33,34] influenced by defect
production, temperature, crystal anisotropy and the den-
sity of crystalline defects such as dislocations and grain
boundaries.[9,16,17,35—41] Dislocations, in particular,
are believed to facilitate the void nucleation and growth,

since they act as stronger sinks for self-interstitial atoms
(STA) than for vacancies, known as dislocation bias.[42]
Consequently, voids may evolve simultaneously with dis-
locations. The interaction of voids and dislocations is thus
believed to significantly affect the evolution and stability
of voids in materials.[9,42,43]

SIA dislocation loops on a basal plane are usu-
ally produced under electron irradiation in hexagonal
close-packed (hcp) Mg as an additional (0001) interstitial
layer.[22,31,44] The SIA dislocation loops are also called
c-component dislocation loops since their Burgers vector
contains the %[0001] component. The formation of the
c-component loop is believed to promote void formation
and growth in hep Ti and Zr metals.[32,45] However, lit-
tle is known about the relationship between voids and the
c-component SIAs loops in Mg so far.

We have recently reported the nucleation and early-
stage growth of voids in Mg, which were observed in
situ at atomic scale using high-resolution transmission
electron microscopy (HRTEM).[46] Voids were read-
ily formed under electron radiation in a commercial
200 kV electron microscope at room temperature due to
the relatively low melting point and low electron damage
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threshold of Mg.[47] The early-stage growth of voids
involves lengthening to a plate-like shape, and then thick-
ening to a more equiaxed shape, which is determined by
the growth kinetics and thermodynamics. Interestingly,
the evolution of surface ledges on various void facets was
observed to affect void evolution. Such a process on void
facets is rarely reported before and can only be observed
in situ at the atomic scale.

In this paper, we further report on void evolution
behaviors during their late-stage growth. This stage is
characterized with the interaction between voids and SIA
dislocation loops. Void coalescence is also observed,
which involves surface diffusion of adatoms. These find-
ings represent new fundamental understandings of void
growth mechanisms.

1. Experimental Procedures Commercial purity
magnesium (99.9%) was used in this study. Major impu-
rities include (wt%) 0.0510% Fe, 0.0320% Mn, 0.0089%
C, 0.0054% Al 0.0027% Na, 0.0026% Zn. The transmis-
sion electron microscopy (TEM) foil was prepared using
a Struers TenuPol-2 electro-polishing machine in an elec-
trolyte of 5.3 g lithium chloride, 11.16 g magnesium per-
chlorate, 100 ml 2-butoxy-ethanol and 500 ml methanol
at -30°C and 200 mA, then low energy ion-milled on a
cold stage and plasma cleaned for high-resolution TEM
observations.

The electron irradiation and in sifu observation were
carried out in a JEM-2010F TEM operating at 200 kV
at room temperature. The electron beam flux is about
82 x 10¥e-m~2.s~!, which corresponds to a dam-
age rate of ~ 1.4 x 1073 dpa - s~!. The listed times in
Figures 3—6 are times from the starts of video recording,
which corresponds to the time listed in the Supplemen-
tary Movies 14, respectively. The recording time in the
movie is expressed as minutes:seconds.

(@)

A series of HRTEM images taken along a [2110] ori-
entation are used for void volume calculations. According
to previous studies,[29,46] the voids are found to have
a polyhedron shape, bounded by {0001}, {0111} and
{0110} facets. The schematic illustration of the void shape
is shown in Supplementary Figure S1. Volume V' of a
void is calculated using the following equation, which is
derived from the void geometry:

V = 2V3L2W — 2/3L(W — S)* tan @

+V3(W — S)* tan’0, (1)
where L is the void length, which is the void dimension
on the (0001) basal plane, W is the void thickness, which
is the void dimension along [0001] direction, S is the
projected length of the {0110} facets, 6 is the acute angle
between {0111} and {0110} plane, which is 33. 8°.

2. Statistics of Void Evolution The data reported
here are from an irradiated region observed under in situ
HRTEM. It has an approximate area of about 180 nm
x 100 nm and a thickness of ~70—100 nm. Figure 1(a)
shows that the total volume of the voids steadily increased
with irradiation dose. Figure 1(b) shows that the average
void length increased from 12 to 15.8 nm, and the average
thickness increased from 2.2 to 5.7 nm. In other words,
the average thickness increased sharply by about 160%,
while the average length increased by only 32%. This is
similar to the previous finding that the void nuclei tend
to grow in the thickness direction after first lengthening
to a plate-like shape.[46]

While the total volume of voids increased, the total
number of voids decreased during the irradiation as
shown in Figure 2. This indicates that some voids grew
larger while others became smaller and eventually dis-
appeared. Interestingly, new voids continued to nucleate,
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Figure 1.
(b) average void length and thickness.
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Figure 2. Evolution of (a) total number of voids and (b) number of newly nucleated voids within the irradiated region with

increasing irratiation dosage.

Figure 3.

The coalescence of two voids (a) Ledges were formed when two voids met each other, as indicated by the green arrow.

(b)(f) Atoms on the ledges gradually diffused out and filled the cavity in the dashed frame. The total length of the two voids

decreased after coalescence (see Supplementary Movie 1).

which caused the fluctuation of the total number of voids.
Such simultaneous nucleation of new voids suggests a
very different evolution kinetics from the conventional
growth and ripening process.[48]

3. Void Coalescence As shown in Figure 3, when
voids A and B initially contacted each other, a big step
was formed on the (0001) facet that bridged the two
voids, as shown in Figure 3(a). This big step evolved into
many small steps along the (0001) facet (Figure 3(b)).
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The small steps moved along (0001) plane and merged to
the side of the neighboring step or the facet. As shown in
Figure 3(b)—(f), six steps merged to four steps, two steps,
one step and finally formed one void without any step,
respectively. As seen, the stepped (0001) facet evolved
to form a flat facet in the end.

It is interesting that the length of void A shortened
as the steps on the (0001) facet vanished, as shown in
Figure 3(b) and 3(d). Moreover, the removal of steps
during the void coalescence occurred much faster than a
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Figure 4. The shortening of void length during Stage 2 growth. (a) and (b) A vacancy layer on a (0001) facet was extending to
the sidewalls, as marked by the dashed yellow lines. (c) and (d) The shortening of void length happened when this vacancy layer

extended over the (0001) facet (see Supplementary Movie 2).

typical void thickness growth process via the nucleation
and extension of vacancy layers on the (0001) facet.[46]
These observations indicate that the atoms on surface
steps most likely diffused along the void’s inner surfaces
[46] (from {0001} facets to {0111} and {0110} sidewalls)
to reshape the void. The fast diffusion of adatoms leads to
fast coalescence of the voids, because the energy barrier
is much smaller for adatom diffusion than for vacancy
diffusion.[49]

The adatom diffusion on the inner surfaces of
voids also occurred during the void thickening process.
Figure 4(c) and 4(d) show that one or a few atomic lay-
ers of void length suddenly vanished during its thickness
growth as marked by the yellow arrow (see Supplemen-
tary Movie 2). This occurred when the vacancy cluster
was extending on a (0001) facet. In other words, the
remaining atoms on the edge of the (0001) facet dif-
fused away quickly to the sidewalls of the void, which
is quite similar to what occurred during void coales-
cence. The diffusion of these excess atoms on the (0001)
facet to the void sidewalls not only directly contributed
to the length shortening but also might have reduced the
vacancy concentration on the sidewalls. This will make it
more difficult for the nucleation of new vacancy layers on
the sidewall facets, which hinders the void growth in the
length direction. In Figure 4(a) and 4(b), the extension ofa
vacancy layer on the (0001) facet involves vacancy diffu-
sion from the matrix to the void surface, which is expected
to be a slow process. The phenomenon of length shorten-
ing during the void thickness growth was also observed
in Zirconium under 1 MeV electron irradiation.[20,50]
The detailed evolution process in Zr could be very simi-
lar to the finding here in Mg, which needs to be clarified
in future studies.

4. Interaction Between SIA Loop and Void
Figure 5 shows an SIA loop eating away a void while
extending along a basal plane from the up-left corner to
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bottom-right side. The void happened to lie in front of the
loop. The void gradually shrank in length as it interacted
with the SIA loop edge (Figure 5(b)~d)), and eventu-
ally disappeared after the SIA loop passes through it (see
Supplementary Movie 3). It should be noted that there
is a transient thickening process of the void observed in
Figure 5(a) and 5(b). The void thickness largely remained
un-shrunk during the process until the length and thick-
ness are comparable in size, and then the thickness is
reduced. The void volume is measured as a function
of time to confirm that it is a void shrinkage process
rather than a geometry change as shown in Supplementary
Figure 2.

Figure 6(a) and 6(b) shows another observation that
the void shrank in its size when it was located in front
of the SIA loop edge similar to the previous observation
in Figure 5. Interestingly, the void did not vanish after
the loop passed it, but rather increased again in length
(Figure 6(c) and 6(d)). The void growth began when it
was located at the broad side of the loops indicated in
Figure 6(e), suggesting such a void position could pro-
mote void growth. The broad sides of the loop are also
found to be typical locations of void nucleation.[46]

The above observation indicates that the evolution
of a void is significantly affected by its interaction with
nearby SIA loops. A void tends to grow if it is located
near the broad side of an SIA loop, and shrink if located
in front of an SIA loop edge. This can be understood by
considering the stress-induced diffusion of point defects
around the loops. The SIA loop can be regarded as a
Frank dislocation with compressive stress field near the
broad side and the tensile stress field near the outer side.
The compressive stress field would attract vacancies,[51]
thus helping void grow larger in this region. However,
the tensile stress field would attract SIAs, causing the
void to shrink. Therefore, a transition from shrinkage
to growth is expected when the void is positioned from
the tension region to compression region, as shown
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basal plane toward the void. The direction of loop extension is indicated by the blue arrow. (b) and (c¢) The void shrank along length
direction. (d) The void vanished after the SIA loop extends over. (see Supplementary Video 3).

in Figure 6(a)~(c). In addition, pipe diffusion through
an SIA dislocation loop may occur when it comes in
direct contact with the void, which was suggested to be
responsible for the void shrinkage observed in an earlier
study.[52]

Void growth or shrinkage is closely related to the
dynamic evolution of SIA loops. The diameters of SIA
loops were observed to grow. SIA loops were also
observed to migrate along the (c) direction in some occa-
sions. The SIA loops are not stationary in the matrix.
They continue to grow or climb until they meet other dis-
location loops [53] or a void. The dynamic evolution of
SIA loops is also commonly seen in other materials under
electron irradiation.[9,43,54]

The dynamic evolution of SIA loops could also result
in the nucleation of new voids if the required condi-
tion of local vacancy super-saturation is attained. As
shown in Figure 2, the nucleation of new voids could
simultaneously occur during the entire irradiation period.
These newly nucleated voids follow the same growth
pattern as reported in our previous paper on early-stage
void growth,[46] and then evolved as observed in this
study.

The voids were observed to shrink mostly in length,
and rarely in thickness (Figure 5(a) and 5(b)). The void
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shrinkage in thickness only occurred when the void
became small and equiaxed in shape. These phenom-
ena were caused due to the following reasons. First,
the length shortening process is energetically favorable,
since it causes a void to evolve into a more equiaxed
shape, which lowers the overall surface energy.[29,46]
The thickness reduction, on the contrary, is thermody-
namically unfavorable. Second, in order to reduce void
thickness, an atom layer should form on the void (0001)
facet. However, this process turned out to be very diffi-
cult. On the one hand, the formation energy of an adatom
on the {0001} surface is 0.61 eV in Mg, which is much
larger than those on the void sidewalls, which are 0.46 eV
onthe {0111} facets and {0110} 0.34 eV on the facets.[49]
In other words, it is more difficult to form an adatom on
the {0001} surface than on the {0111} or {0110} sur-
face. On the other hand, for a typical elongated void, a
(0001) facet is larger than a (0111) facet or a (0110)
facet. Therefore, it takes more adatoms to fill the entire
(0001) facet, and a step needs to form first. As seen in
the void coalescence, the step on the (0001) facet is ener-
getically unfavorable and will be quickly removed via
adatom diffusion through the inner facets to the sidewalls.
This makes the formation of an atom layer on the (0001)
surface more difficult.
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-

Broad Side of the Loop

Figure 6. The void length grew as an SIA loop was passing through it. (a) and (b) The void shrank in size when it was located in
front of an extending SIA loop edge. The extending direction of the SIA loop is indicated by the blue arrow. (c¢) and (d) The void
began to grow in length when the SIA loop moved to its side (see Supplementary Movie 4). (e) Schematic illustration of a void
located at the broad side of an SIA loop. A void tends to grow on this side.

5. Conclusion With increasing irradiation dosage,
the total volume of voids increases and the number of
voids decreases, while new voids still nucleate but with
decreasing nucleation rate. The evolution of voids in Mg
under active irradiation is significantly affected by their
interactions with SIA loops. A void will grow if it is
on the broad side of an SIA loop, and shrink if it is
located in front of the loop edge. Two voids close to each
other may coalesce with each other via the formation and
elimination of steps on the {0001} facets. The fast dif-
fusion of adatoms on the {0001} facets is believed to be
largely responsible for the fast coalescence of voids. Void
growth in thickness is usually accompanied by shrinking
in length. Elongated voids usually do not shrink in thick-
ness (c-axis) until their length is reduced to an extent that
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the void becomes equiaxed. This is attributed to the diffi-
culty in nucleating an atomic layer on the {0001} facets as
well as to thermodynamics, which favor equiaxed voids.

Supplementary Online Material. A more detailed
information on experiments is available at http://dx.doi.
org/10.1080/21663831.2014.904826.
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